K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

\(P\left(x\right)=ax^2+bx\)

\(\Rightarrow P\left(-1\right)=a-b\)

và \(P\left(-2\right)=4a-2b\)

\(\Rightarrow P\left(-1\right)+P\left(-2\right)=5a-3b=0\)

\(\Rightarrow P\left(-1\right)\)và \(P\left(-2\right)\)trái dấu hoặc cùng bằng 0

\(\Rightarrow P\left(-1\right)\)\(.P\left(-2\right)\le0\)(đpcm)

20 tháng 5 2018

P(-1) = (a – b + c);

P(-2) = (4a – 2b + c)

P(-1) + P(-2) = (a – b + c) + (4a – 2b + c) = 5a – 3b + 2c = 0

Þ P(-1) = – P(-2)

Do đó P(-1).P(-2) = – [P(-2)]^2 ≤ 0

Vậy P(-1).P(-2) ≤ 0

29 tháng 8 2018

undefined

5 tháng 4 2019

bạn có thể giải thích giúp mình tại sao khi

tổng P(-1)vàP(-2) = 0 thì suy ra được P(-1)= -P(-2) không

cảm ơn bạn nhiều

3 tháng 5 2018

Nếu như theo mik ns thì bài toán làm sau đây

\(p\left(-1\right)=a\left(-1\right)^2-b.1+c=a-b+c\) (1)

\(p\left(2\right)=a\left(2^2\right)+b.2+c=4a-2b+c\) (2)

Lấy (1)+(2)

\(p\left(-1\right)+p\left(-2\right)=5a-3b+2c=0\)

\(p\left(-1\right)=-P\left(-2\right)\)\(=p\left(2\right)\)

Lấy p(-1).p(2) trái dấu

\(\Rightarrow p\left(-1\right).p\left(2\right)\le0\)

\(\Rightarrow p\left(-1\right).p\left(-2\right)\le0\)

3 tháng 5 2018

Bạn ơi phải là p(-1).p(2) hoặc p(1).p(-2)

Giải

\(P\left(-1\right)=\left(a-b+c\right)\)

\(P\left(-2\right)=\left(4a-2b+c\right)\)

\(P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)=5a-3b+2c=0\)

\(\Rightarrow\) \(P\left(-1\right)=-P\left(-2\right)\)

Do đó \(P\left(-1\right).P\left(-2\right)\) = \(\left[P\left(-2\right)\right]^2\le0\)

a) \(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a-b+c\)

\(P\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)

b) \(P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)=5a-3b+2c\)

\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)

Do đó \(P\left(-1\right)\) . \(P\left(-2\right)=-\left[P\left(-2\right)^2\right]\le0\)

7 tháng 5 2015

Tính H(-1) = a.(-1)2 + b.(-1) + c = a - b + c

H(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c

=> H(-1) + H(-2) = 5a - 3b + 2c = 0 

=> H(-1) = - H(-2)

=> H(-1) . H(-2) = [- H(-2)].h(-2) = - H2(-2) \(\le\) 0 Vì H2(-2) \(\ge\) 0

=> ĐPCM

29 tháng 6 2020

Ta có \(H\left(-1\right)=a-b+c;H\left(-2\right)=4a-2b+c\)

\(\Rightarrow H\left(-1\right)+H\left(-2\right)=a-b+c+4a-2b+c=5a-3b+2c=0\left(1\right)\)

\(\Rightarrow H\left(-1\right)=-H\left(-2\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow H\left(-1\right)\cdot H\left(-2\right)=-H\left(-2\right)\cdot H\left(-2\right)=-\left[H\left(-2\right)\right]^2=\le0\)

29 tháng 5 2017

#Giải:

Ta có:H(x)=ax^2+bx+c

=>H(-1)=a-b+c

H(-2)=4a-2b+c

=>H(-1)+H(-2)=a-b+c+4a

=5a-3b+2c

=a

=>H(-1)-H(-2)=0

H(-1)=H(-2)

=>H(-1).H(-2)=0

H(-1).H(-2)<0

=>H(-1).H(-2)< hoặc =0.

\(H\left(-1\right)=a-b+c\)        (1)

\(H\left(-2\right)=4a-2b+c\)        (2)

Lấy (1) + (2) vế theo vế được

\(H\left(-1\right)+H\left(-2\right)=5a-3b+2c=0\)

Suy ra    \(H\left(-1\right)=H\left(-2\right)=0\Rightarrow H\left(-1\right).H\left(-2\right)=0\)

Hoặc \(H\left(-1\right)\)\(H\left(-2\right)\)có 1 số âm và một số dương   

\(\Rightarrow H\left(-1\right).H\left(-2\right)<0\)

Vậy      \(H\left(-1\right).H\left(-2\right)\le0\)

4 tháng 5 2017

Ta có: P(-1) = a-b+c

P(-2) = 4a-2b+c

=> P(-1)+P(-2) = 5a-3b+2c = 0

=> P(-1) = P(2)

=> P(-1).P(-2) = P(2).P(-2) = - [P(2)]2 \(\le\)0

Vậy P(-1).P(-2) \(\le\)0

4 tháng 5 2017

...

=> ...

=> P(-1) = - P(-2)

=> P(-1).P(-2) = - P2(-2) \(\le\)0 vì P2(-2) \(\ge\)0

=> P(-1).P(-2) \(\ge\)0

Câu trả lời này mới đúng , vừa nãy mk nhầm tưởng là nhỏ hơn hoặc bằng, sau đó mk nhìn lại đề bài nên mk sửa