CMR:A=\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{100}{2^{100}}\) <2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)
=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\)
=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.
b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\)
=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)
=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)
Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\)
=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)
=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)
=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.
A = 1/3 + 2/32 + 3/33 + ... + 100/3100
=> 3A = 1 + 2/3 + 3/32 + ... + 100/399
- A = 1/3 + 2/32 + ... + 99/399 + 100/ 3100
________________________________________
=> 2A = 1 + 1/3 + 1/32 + ... + 1/399 + 100/3100
=> 6A = 3 + 1 + 1/3 + ... + 1/398 + 100/399
- 2A = 1 + 1/3 + 1/32 + ... + 1/398 + 1/399 +100/3100
_____________________________________________
4A = 3 - 99/399 - 100/3100 < 3
=> 4A < 3
=> A < 3/4
Ta có : A = \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)
=> 5A = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)
=> 5A - A = \(\left(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\right)\)
=> 4A \(=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)
=> 20A = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}\)
Lấy 20A trừ A ta có :
20A - A = \(\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\right)\)
16A = \(1-\frac{99}{5^{99}}+\frac{99}{5^{100}}=1+99\left(\frac{1}{5^{100}}-\frac{1}{5^{99}}\right)=1-\frac{99.4}{5^{100}}\)
=> A = \(\frac{1}{16}-\frac{99}{4.5^{100}}< \frac{1}{16}\left(\text{ĐPCM}\right)\)
Ta có :A=\(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{99}{5^{100}}\)
5A=\(\frac{1}{5}+\frac{2}{5^2}+.....+\frac{99}{5^{99}}\)
5A -A=\(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{99}{5^{99}}\right)\)-\(\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{99}{5^{100}}\right)\)
4A =\(\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)
Đặt B=\(\frac{1}{5}+\frac{1}{5^2}+.....+\frac{1}{5^{99}}\)
5B=\(1+\frac{1}{5}+...+\frac{1}{5^{98}}\)
5B - B =\(\left(1+\frac{1}{5}+...+\frac{1}{5^{98}}\right)\)- \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)\)
4B =\(1-\frac{1}{5^{99}}\)
Ta có :4A = B -\(\frac{99}{5^{100}}\)
16A = 4B -\(\frac{4.99}{5^{100}}\)=\(1-\frac{1}{5^{99}}-\frac{4.99}{5^{100}}\)
A = \(\frac{1}{16}-\frac{1}{5^{99}.16}-\frac{99}{5^{100}.4}\)< \(\frac{1}{16}\)
Suy ra: A <\(\frac{1}{16}\)
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+........+\frac{100}{2^{100}}\)
\(\Rightarrow2A=1+\frac{2}{2}+\frac{3}{2^2}+..........+\frac{100}{2^{99}}\)
\(\Rightarrow2A-A=A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{99}}+\frac{100}{2^{100}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{98}}+\frac{100}{2^{99}}\)
\(\Rightarrow2A-A=A=2-\frac{100}{2^{99}}< 2\)
Vậy \(A< 2\)