chứng minh đẳng thức
1)a(b+c)-a(b+d)=a(c-d)
2)a(b-c)+a(d+c)=a(b+d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a( b+c) - b(a-c) = ( a+b) c
VT = a( b+c) - b(a-c)
= ab + ac - ab + bc
= ac + bc
= c(a + b) (=VP)
2)a (b - c)- a (b+d)= - a (c+d)
VT= a (b - c)- a (b+d)
= ab - ac - ab - ad
= -ac - ad
= -a(c + d) (=VP)
1) a(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c(a+b)=> đpcm
2) a(b-c)-a(b+d)=ab-ac-ab-ad=-ac-ad=-a(c+d) => đpcm
nhớ LI KE
1) xét VT=a(b+c)-b(a-c)
=ab+ac-ba+bc
=ac+bc
=c(a+b) = VP
vậy VT=VP (đpcm)
2) xét VT=a(b-c)-a(b+d)
=ab-ac-ab-ad
=-ac-ad
=-a(c+d)=VP
vậy VT=VP ( đpcm)
Ta có:
Vế trái: -a.(c-d)-d.(a+c)
=-ac+ad-ad-cd
=-ac-cd (1)
Vế phải: -c(a+d)=-ac-cd (1)
Vì (1)=(2)
<=> -a.(c-d)-d.(a+c)=-c.(a+d) (đpcm)
(Lưu ý: "đpcm" nghĩa là "điều phải chứng minh".)
Lời giải:
1) \(VT=-a.\left(c-d\right)-d.\left(a+c\right)\)
$=-ac+ad-da-dc$
$=-ac-dc$
$=-c(a+d) (đpcm)$
$2) (3a+2).(2a-1)+(3-a).(6a+2)-17.(a-1)$
$=6a^2-3a+4a-2+18a+6-6a^2-2a-17a+17$
$=21$
Vậy giá trị biểu thức không phụ thuộc vào a
a) Sửa đề: (a - b) + (c + d) - (a - c) \(\rightarrow\) (a - b) + (c + d) - (a + c)
(a - b) + (c + d) - (a + c)
= (a + c) - (b + d) - (a + c)
= 0 - (b + d)
= -(b + d)
Vậy...
b) (a - b) - (c - d) + (b + c)
= (a + d) - (b + c) + (b + c)
= a + d
Vậy...
Ta có
\(\left(a-b\right)+\left(c-d\right)=a-b+c-d=\left(a+c\right)-\left(b+d\right)\)
b
\(\left(a-b\right)-\left(c-d\right)=a-b-c+d=\left(a+d\right)-\left(b+c\right)\)
c,
\(-\left(-a+b+c\right)+\left(b+c-1\right)=a-b-c+b+c-1=\left(b-c+6\right)-\left(7-a+b\right)+c\)Nếu thấy bài làm của mình đúng thì tick nha ban.Nhân dịp đầu xuân năm mới mình chúc bạn vui vẻ mạnh khoẻ nha.
tick thì mình sẽ giAỉ , mà lạ thật các cậu lạm dụng quá người ta mất công bỏ chất xám ra cho các cậu lời giải mà ít khi tick lắm
b, (a - b) - (c - d) + (b + c) = a - b - c + d + b + c = a + (-b + b) + (-c + c) + d = a + d
a) Biến đổi vế trái, ta có:
VT = a( b + c ) - a( b + d )
/
VT a( b c ) a( b d )
= ab + ac - ab - ad
= ac - ad
= a( c - d ) = VP
Vậy a( b + c ) - a( b + d ) = a( c - d ) ( đpcm )
b) Biến đổi vế trái, ta có:
VT = a( b - c ) + a( d + c )
= ab - ac + ad + ac
= ab + ad
= a( b + d ) = VP
Vậy a( b - c ) + a( d + c ) = a( b + d ) ( đpcm )
1) \(a\left(b+c\right)-a\left(b+d\right)=ab+ac-ab-ad\)
\(=\left(ab-ab\right)+\left(ac-ad\right)=ac-ad=a\left(c-d\right)\)
2) \(a\left(b-c\right)+a\left(d+c\right)=ab-ac+ad+ac\)
\(=\left(ab+ad\right)+\left(ac-ac\right)=ab+ad=a\left(b+d\right)\)