Cho tam giác ABC cân tại A . Kẻ BK vg góc với AC , CH vg góc với AB ( K thuộc AC ; H thuộc AB ) . C/minh:
a, tam giác AHK cân
b, BK cắt CH ở I . C/minh : AI là tia phân giác của góc BAC
c, HK song song với BC
Giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AME vuông tại E và tam giác AMF vuông tại F có:
\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của \(\widehat{BAC}\))
AM:chung
Suy ra \(\Delta AME=\Delta AMF\)(cạnh huyền- góc nhọn)(1)
=> ME=MF(2 cạnh tương ứng)
Suy ra MEF cân.
b)Theo đề bài: tam giác ABC có M là trung điểm BC và AM là phân giác góc BAC. Suy ra AM vừa là đường trung tuyến vừa là đường phân giác của tam giác ABC và tam giác ABC là tam giác cân.(2)
c)Từ (2)suy ra AM là đường cao của tam giác cân ABC và \(AM\perp BC\)(3)
Từ (1) ta cũng suy ra AE=AF (2 cạnh tương ứng) và AEF là tam giác cân. Xét:
\(\widehat{AEF}=\widehat{AFE=}\frac{180^o-\widehat{A}}{2}\left(4\right)\)
\(\widehat{B}=\widehat{C}=\frac{180^o-\widehat{A}}{2}\left(5\right)\)(ABC là tam giác cân(cmt))
Từ (4) và (5), suy ra các cạnh trên bằng nhau. Mà chúng lại ở vị trí so le trong nên EF//BC(6)
Từ (3) và (6), suy ra \(AM\perp EF\)(đpcm)
a: Xet ΔAHD vuông tại H và ΔAKD vuông tại K co
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
b: góc BAD+góc CAD=90 độ
góc BDA+góc DAH=90 độ
góc CAD=góc DAH
=>góc BAD=góc BDA
=>ΔBAD cân tại B
ho tam giác vg ác vg tạo a (ab<ac) ,đường cao ah. Trên bc lấy m sao cho ba=bm. Từ m kẻ mn vg góc với ac (n thuộc ac). Cmr
a. Tam giác ANH cân
b. BC +AH >AB+AC
c. 2ac^2 - bc^2= ch^2- bh^2
o l m . v n
a: ΔBCA cân tạiA
mà AH là đường cao
nên AH là phân giác
b: Xet ΔBMI vuông tại M và ΔBHI vuông tại H có
BI chung
góc MBI=góc HBI
=>ΔBMI=ΔBHI
=>IM=IH
Xét ΔIMA vuông tại M và ΔINA vuông tại N có
AI chung
góc MAI=góc NAI
=>ΔIMA=ΔINA
=>IM=IN=IH
c: Xet ΔIMA vuông tại M và ΔINA vuông tại N có
AI chung
góc MAI=góc NAI
=>ΔIMA=ΔINA
=>góc MIA=góc NIA
=>IA là phân giác của góc MIN
A, xét tam giác ABE và tam giác AME có : AE chung
góc BAE = góc MAE do AE là phân giác của góc BAC (gt)
góc ABC = góc AME = 90 do ...
=> tam giác ABE = tam giác AME (ch - gn)
=> BE = ME (đn)
Xét tam giác ABE và AME có :
AE chung
BAE=MAE (pg)
ABE=AME=90
=> tam giác ABE = AME (ch-gn)
=> EB=EM ; AB=AM (tương ứng)
B) Xét tam giác ABC và AMN có :
góc A chung
AB=AM
ABC=AMN
=> tam giác ABC= AMN (g.c.g)
=> AC=AN => Tam giác ACN cân tại A mà AE là pg => AE đồng thời là đường cao => AE vuông góc với NC
a,xét tgiac abk vuông tại k và tgiac ach vuông tại h có : góc bac chung,ab=ac(do tgiac abc cân tại a) =>tgiac abk=tgiac ach ( ch-gn) =>ak=ah( cặp cạnh tương ứng) xét tgiac ahk có ak=ah(cmt)=>tgiac ahk cân tại a b,ta có ah và bk là đường cao , cắt nhau tại i => i là trực tâm => AI cũng là đường cao mà trong tgiac cân, đường cao đồng thời là đường phân giác=> AI cũng là phân giác góc bac(đpcm) c,AI là đường cao tgiac abc => cũng là đường cao tgiac ahk => AI vuông góc hk,bc => hk song song bc ( từ vuông góc->song song)
vài chỗ tui trình bày k ok lắm nên bạn nên trình bày lại theo cách của bạn nhé .-.
a, xét tam giác AKB và tam giác AHC có : góc A chung
AB = AC do tam giác ABC cân tại A (gt)
góc AKB = góc AHC = 90
=> tam giác AKB = tam giác AHC (ch-gn)
=> AH = AK (Đn)
=> tam giác AHK cân tại A (Đn)
b, xét tam giác AHI và tam giác AKI có : AI chung
AH = AK (câu a)
góc AHI = góc AKI = 90
=> tam giác AHI = tam giác AKI (ch-cgv)
=> góc HAI = góc KAI (đn) mà AI nằm giữa AH và AK
=> AI là pg của góc HAK (đn)
c, tam giác AHK cân tại A (câu a) => góc AHK = (180 - góc A) : 2
tam giác ABC cân tại A (gt) => góc ABC = (180 - góc A) : 2
=> góc AHK = góc ABC mà 2 góc này đồng vị
=> HK // BC (đl)