rút gọn biểu thức : A = 2^100 - 2^99 + 2^98 - 2^97 +....+2^2 -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2
=> B x 2 = 2101 - 2100 + 299 - 298 + ...23 - 22
=> B x 2 + B = (2101 - 2100 + 299 - 298 + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)
<=> B x 3 = 2101 - 2 = 2. ( 299 - 1)
=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)
Phần c) Làm tương tự Lấy C x 3 rồi + với C.
Ta có :
B = 2100 - 299 + 298 - 297 + ... + 22 - 2 + 1
=> B = ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )
=> 22B = 2 . [ ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 ) ]
=> 4B = ( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )
=> 4B - B = [( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )] - [( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )]
=> 3B = ( 2102 - 1 ) + ( 2 - 2101 )
=> 3B = 2101 - 1
=> B = \(\frac{2^{101} - 1}{3}\)
gọi dãy số là A, ta có:
A = 2100 - 299 - ...... - 21
2A = 2101 - 2100 - .... - 22
2A = ( 2101 - ... - 22 ) - ( 2100 - ... - 2 )
A = 2101 - 2
a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012
2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013
3M=2^0+2^2013
M=(2^0+2^2013)÷3
Vậy.......
b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012
3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013
4N=3-3^2013
N=(3-3^2013)÷4
Vậy........
K tao nhé ko lên lớp tao đánh m😈😈😈
Ta có công thức : với a ; b là 2 số thực thì ta luôn có :
a2 - b2 = a2 + ab - ab - b2 = a(a + b) - b(a + b) = (a - b)(a + b)
Áp dụng vào bài toán ta được :
A = 1002 - 992 + 982 - 972 + ...... + 22 - 12
= (100 - 99)(100 + 99) + (98 - 97)(98 + 97) + ......... + (2 - 1)(2 + 1)
= 1 + 2 + 3 + ......... + 99 + 100
\(=\frac{100.\left(100+1\right)}{2}=5050\)
A=(1002-992)+(982-972)+...+(22-12)
A=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)
A=100+99+98+97+...+2+1
A=(100+1)100/2=5050
P/s : Happy new year!
A=(1002-992)+(982-972)+...+(22-12)
A=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)
A=100+99+98+97+...+2+1
A=(100+1)100/2=5050
(nho l.i.k.e nha)
\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
Có 50 cặp số.
\(A=10+10+10+...+10\)
\(A=10.50\)
\(A=500\)
1002-992+982-972+...+22-12
=(1002-992)+(982-972)+...+(22-12)
=(100-99) (100+99)+(98-97)(98-97)+...+(2-1)(2+1)
= 1+2+3+..+99+100
=\(\frac{100.101}{2}=5050\)
học tốt
A = 1002 - 992 + 982 - 972 + ...+ 22 - 12
A = (100- 99).(100+99) + (98-97).(98+97) + ...+ (2-1).(2+1)
A = 199 + 195 + ...+ 3
Số số hạng là: ( 199-3) : 4 + 1 = 50
Tổng các số hạng là: (199+3) x 50 : 2 = 5050
\(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+191+....+3\)
\(=5050\)
Ta có:
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(\Rightarrow A=\left(-2\right)^{100}+\left(-2\right)^{99}+\left(-2\right)^{98}+\left(-2\right)^{97}+...+\left(-2\right)^2+\left(-2\right)\)\(\Rightarrow-2A=\)\(\left(-2\right)^{101}+\left(-2\right)^{100}+\left(-2\right)^{99}+\left(-2\right)^{98}+...+\left(-2\right)^3+\left(-2\right)^2\)
\(\Rightarrow-2A-A=\left(-2\right)^{101}-\left(-2\right)\)
\(\Rightarrow-3A=\left(-2\right)^{101}+2\)
\(\Rightarrow A=\frac{2-2^{101}}{-3}\)
\(A=2^{100}-2^{99}+2^{98}-2^{97}+.....+2^2-2 \)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+......+2^3-2^2\)\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+.....+2^3-2^2+2^{100}-2^{99}+2^{98}-2^{97}+.....+2^2-2\)\(2A+A=2^{101}-2\)
\(3A=2^{101}-2\)