Tìm các số nguyên x và y biết
a) (x2+7).(x2-49)<0
b) (2x-1).(2y+1)=-35
c)xy -2x+3y=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
Bài 2
\(a,\)\(\left(x^2+7\right)\left(x^2-49\right)< 0\)
Vì \(x^2+7>0\)\(\Rightarrow x^2-49< 0\)
\(\Rightarrow\left(x-7\right)\left(x+7\right)< 0\)
\(...\)
Bài 2:
a) \(\left(x^2+7\right).\left(x^2-49\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+7< 0\\x^2-49>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+7>0\\x^2-49< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2< -7\\x^2>49\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x^2>-7\\x^2< 49\end{cases}}\)
\(\Leftrightarrow-7< x^2< 49\)
Mà \(x^2\ge0\)và \(x^2\)là 1 SCP
\(\Rightarrow x^2\in\left\{1;4;9;16;25;36\right\}\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{1;2;3;4;5;6\right\}\)
a) x= 10; y = 25
b) x + 2 y + 10 = 1 5 => ( x = 2).5 = ( y = 10).1=> 5.x + 10 = y + 10
=> 5.x = y mà y – 3.x = 2
Nên x = 1; y = 5
c) x = 20 ; y = 25
a, Vì |2x+8| và |3y-9x| đều >= 0
=> |2x+8| + |3y-9x| >= 0
Dấu "=" xảy ra <=> 2x+8=0 và 3y-9x=0 <=> x=-4 và y=-12
Vậy x=-4 và y=-12
Tk mk nha
a) Ta có: \(\left(x^2+7\right)\left(x^2-49\right)< 0\)
\(\Rightarrow x^2+7;x^2-49\) khác dấu
*Trường hợp 1:
\(\left\{{}\begin{matrix}x^2+7< 0\\x^2-49>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2< -7\\x^2>49\end{matrix}\right.\)(loại)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x^2+7>0\\x^2-49< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2>-7\\x^2< 49\end{matrix}\right.\Leftrightarrow x\in\left\{0;-1;1;2;-2;3;-3;4;-4;5;-5;6;-6\right\}\)
Vậy: \(x\in\left\{0;1;-1;2;-2;3;-3;4;-4;5;-5;6;-6\right\}\)
b) Ta có: (2x-1)(2y+1)=-35
\(\Leftrightarrow\)2x-1; 2y+1\(\in\)Ư(-35)
\(\Leftrightarrow\)2x-1; 2y+1\(\in\){1;-1;5;-5;7;-7;35;-35}
*Trường hợp 1:
\(\left\{{}\begin{matrix}2x-1=1\\2y+1=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\2y=-36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-18\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 2:
\(\left\{{}\begin{matrix}2x-1=-35\\2y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-34\\2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-17\\y=0\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 3:
\(\left\{{}\begin{matrix}2x-1=-1\\2y+1=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\2y=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=17\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 4:
\(\left\{{}\begin{matrix}2x-1=35\\2y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=-1\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 5:
\(\left\{{}\begin{matrix}2x-1=5\\2y+1=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\2y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-4\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 6:
\(\left\{{}\begin{matrix}2x-1=-7\\2y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 7:
\(\left\{{}\begin{matrix}2x-1=-5\\2y+1=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 8:
\(\left\{{}\begin{matrix}2x-1=7\\2y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=8\\2y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)
Vậy: x∈{1;-17;0;18;3;-3;-2;4} và y∈{-18;0;17;-1;-4;2;3;-3}