Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
a,2x+5 = 0 hoặc 5-x=0 ( còn lại tự tính)
b,,x2-4=0 hoặc x2-36=0 ( còn lại tự tính)
tương tự như vậy làm câu c
d, bài này dài ( không làm )
e, ......( dài)
f, x={4;5;6}
a)x2(3-x)=0
\(\Rightarrow\orbr{\begin{cases}x=0\\3-x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
b)|2x+1|<3
Vì gái trị tuyệt đối là đương
\(\Rightarrow\hept{\begin{cases}2x+1=2\\2x+1=1\\2x+1=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\2x=0\\2x=-1\end{cases}\Rightarrow}\hept{\begin{cases}xkoTM\\x=0\\xkoTM\end{cases}}\)
1
C=3210=32.105=(32)105=9105
D=2310=23.105=(23)105=8105
Vì9105>8105
=>C>D
2
a)2x.(3y-2)+(3y-2)=6
(3y-2).(2x+1)=6
=>6\(⋮\)2x+1
=>2x+1\(\in\)Ư(6)={1;2;3;-1;-2;-3}
Mà 2x+1 là số lẻ
=>2x+1\(\in\){1;3;-1;-3}
Ta có bảng sau:
2x+1 | -1 | -3 | 1 | 3 |
3y-2 | -6 | -2 | 6 | 2 |
x | \(-1\notin N\) | \(-2\notin N\) | \(0\in N\) | \(1\in N\) |
y | \(\frac{-4}{3}\notin N\) | \(0\in N\) | \(\frac{8}{3}\notin N\) | \(\frac{4}{3}\notin N\) |
Vậy x\(\in\){0;1}
y\(\in\){0}
Phần này bạn lên học 24h nha Câu hỏi của Đỗ Thế Minh Quang
Chúc bn học tốt
a. \(\hept{\begin{cases}x-2=0\\x+1=0\end{cases}}\hept{\begin{cases}x=2\\x=\left(-1\right)\end{cases}}\)
Xin lỗi nha. Mk mún giúp lắm nhưng mk mới học lp 5 thui nên đọc đề ko hỉu gì hết đó.
a) Ta có: \(\left(x^2+7\right)\left(x^2-49\right)< 0\)
\(\Rightarrow x^2+7;x^2-49\) khác dấu
*Trường hợp 1:
\(\left\{{}\begin{matrix}x^2+7< 0\\x^2-49>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2< -7\\x^2>49\end{matrix}\right.\)(loại)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x^2+7>0\\x^2-49< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2>-7\\x^2< 49\end{matrix}\right.\Leftrightarrow x\in\left\{0;-1;1;2;-2;3;-3;4;-4;5;-5;6;-6\right\}\)
Vậy: \(x\in\left\{0;1;-1;2;-2;3;-3;4;-4;5;-5;6;-6\right\}\)
b) Ta có: (2x-1)(2y+1)=-35
\(\Leftrightarrow\)2x-1; 2y+1\(\in\)Ư(-35)
\(\Leftrightarrow\)2x-1; 2y+1\(\in\){1;-1;5;-5;7;-7;35;-35}
*Trường hợp 1:
\(\left\{{}\begin{matrix}2x-1=1\\2y+1=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\2y=-36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-18\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 2:
\(\left\{{}\begin{matrix}2x-1=-35\\2y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-34\\2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-17\\y=0\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 3:
\(\left\{{}\begin{matrix}2x-1=-1\\2y+1=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\2y=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=17\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 4:
\(\left\{{}\begin{matrix}2x-1=35\\2y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=-1\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 5:
\(\left\{{}\begin{matrix}2x-1=5\\2y+1=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\2y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-4\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 6:
\(\left\{{}\begin{matrix}2x-1=-7\\2y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 7:
\(\left\{{}\begin{matrix}2x-1=-5\\2y+1=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)(thỏa mãn)
*Trường hợp 8:
\(\left\{{}\begin{matrix}2x-1=7\\2y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=8\\2y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)
Vậy: x∈{1;-17;0;18;3;-3;-2;4} và y∈{-18;0;17;-1;-4;2;3;-3}