K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để \(\frac{2x-4}{x+2}\)nguyên thì

\(2x-4⋮x+2\)

\(\Rightarrow2\left(x+2\right)-8⋮x+2\)

Mà \(2\left(x+2\right)⋮x+2\)

\(\Rightarrow8⋮x+2\)

\(\Rightarrow x+2\in\left\{1;2;4;8;-1;-2;-4;-8\right\}\)

\(\Rightarrow x\in\left\{-1;0;2;6;-3;-4;-6;-10\right\}\)

Học tốt

23 tháng 2 2020

A=\(\frac{2x-4}{x+2}=\frac{2\left(x+2\right)-8}{x+2}=2-\frac{8}{x+2}\)

Để A nguyên thì \(\frac{8}{x+2}\)nguyên =>\(x+2\inƯ\left(8\right)=\left\{\pm1,\pm2,\pm4,\pm8\right\}\)

Ta có bảng:

x+2-8-4-2-11248
x-10-6-4-31026

Vậy x={-10,-6,-4,-3,1,0,2,6}thì A nguyên

24 tháng 12 2021

a) điều kiện xác định: x≠3 và x≠2

b) \(\dfrac{x^2-4}{\left(x-3\right)\left(x-2\right)}\)=\(\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)}\)=\(\dfrac{x+2}{x-3}\)

Tại x=13 ta có \(\dfrac{13+2}{13-3}\)=\(\dfrac{3}{2}\)

 

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

5 tháng 12 2023

A = \(\dfrac{22-3x}{4-x}\)

A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)

A = 3 + \(\dfrac{10}{4-x}\)

A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi

 4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒   \(x\) = 3

Vậy Amin  = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3

Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3 

4 tháng 5 2020

X bằng 1 hoặc 0 cũng được

4 tháng 5 2020

c) Ta có: M < 4  => 13,8 : ( 5,6 - x ) < 4

                          => 5,6 - x < 13,8:4

                               5,6 - x < 3,45

                                       x < 5,6 - 3,45

                                       x < 2,15

Vậy x < 2,15

2 tháng 9 2018

\(a,\left|3x-1\right|=\left|5-2x\right|\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5-2x\\3x-1=2x-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=6\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{6}{5}\\x=-4\end{cases}}\)

b,\(\left|2x-1\right|+x=2\)

\(\Leftrightarrow\left|2x-1\right|=2-x\)

Điều kiện \(2-x\ge0\Leftrightarrow x\le2\)

\(\Rightarrow\orbr{\begin{cases}2x-1=2-x\\2x-1=x-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=3\\x=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(\text{nhận}\right)\\x=-1\left(\text{nhận}\right)\end{cases}}}\)

2 tháng 9 2018

c.\(A=0,75-\left|x-3,2\right|\)

Vì \(\left|x-3,2\right|\ge0\Rightarrow0,75-\left|x-3,2\right|\le0,75\)

Dấu "=' xảy ra \(\Leftrightarrow x-3,2=0\Leftrightarrow x=3,2\)

Vậy Max A = 0,75 khi x = 3,2

\(d,B=2.\left|x+1,5\right|-3,2\)

Vì 2. |x + 1,5| ≥ 0 => B ≥ -3,2

Dấu " = ' xảy ra khi \(2\left|x+1,5\right|=0\)

\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\)

Vậy Min B = -3,2 khi x = -1,5

12 tháng 9 2021

a) \(A=\left|x-5\right|+\left|x-7\right|=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)

\(minA=2\Leftrightarrow\)\(7\ge x\ge5\)

b) \(B=\left|2x+1\right|+\left|2x-2\right|=\left|2x+1\right|+\left|2-2x\right|\ge\left|2x+1+2-2x\right|=\left|3\right|=3\)

\(minB=3\Leftrightarrow1\ge x\ge-\dfrac{1}{2}\)

12 tháng 9 2021

Mình cảm ơn ạ