Chứng minh rằng (817-279-913) chia hết cho 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
81^7 - 27^9 - 9^13
= (3^4)^7 - (3^3)^9 - (3^2)^13
= 3^28 - 3^27 - 3^26
= (3^26.3^2) - (3^26.3^1) - (3^26.1)
= 3^26.(9 - 3 - 1)
= 3^22.(3^4.5)
= 3^22.405 chia hết cho 405
=> 81^7 - 27^9-9^13 chia hết cho 405
1; 87 - 218 ⋮ 14
A = 87 - 218
A = - 131 (là số lẻ); 14 là số chẵn
Số lẻ không bao giờ chi hết cho số chẵn
2; 76 + 75 - 913 ⋮ 55
B = 76 + 75 - 913
B = 151 - 913
B = - 762 không chia hết cho 5 nên không chia hết cho 55
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
d; 109 + 108 + 107 ⋮ 555
109 + 108 + 107
= 217 + 107
= 324 < 555
109 + 108 + 107 < 555 (không thể chia hết cho 555)
e; 817 - 279 - 913 ⋮ 45
817 - 279 -913
= 538 - 913
= - 375
3 + 7 + 5 = 15 không chia hết cho 9 n ên 375 không chia hết cho 45
a) 7⁶ + 7⁵ - 7⁴
= 7⁴.(7² + 7 - 1)
= 7⁴.55 ⋮ 55
Vậy (7⁶ + 7⁵ - 7⁴) ⋮ 55
b) 81⁷ - 27⁹ + 3²⁹
= (3⁴)⁷ - (3³)⁹ + 3²⁹
= 3²⁸ - 3²⁷ + 3²⁹
= 3²⁶.(3² - 3 + 3³)
= 3²⁶.(9 - 3 + 27)
= 3²⁶.33 ⋮ 33
Vậy (81⁷ - 27⁹ + 3²⁹) ⋮ 33
Tham khảo nha Câu hỏi của Đỗ Thị Thu Trang - Toán lớp 6 - Học toán với OnlineMath
sai đề
sửa: chia hết ch 405
405=3^4.5=81.5
27^9=27^8.27=3^24.27=81^6.27
9^13=9^12.9=8^6.9
mà 81^7-81^6.27-81^6.9=81^6.(81-27-9)=81^6.45 chia hết cho 81 và 5
Vậy ....
817-279-913
= ( 34)7 - (33)9- ( 32)13
= 328 - 327-326
=326x 32-326 x 3 - 326 x 1
= 326x ( 32-3-1)
= 326 x5
= 324x 32 x 5
= 324 x 45 chia hết cho 45
=