K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a , b tự lm nha ( dễ mà )

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

Và MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

 ...

23 tháng 2 2020

:< chép luôn hình cho nó thanh niên :)))

1 tháng 9 2019

Hình bạn tự vẽ nhé. EF cắt AH tại L.
Xét tam giác AIM vuông tại I(MI vuông góc AB) có HF//IM ( H là trực tâm nên HF vuông góc AB, từ vuông góc đến song song >> HF//IM) >> \(\frac{AF}{AI}=\frac{AH}{AM}\left(Talet\right)\)
CMTT >> \(\frac{AE}{AK}=\frac{AH}{AM}\left(Talet\right)\)>> \(\frac{AF}{AI}=\frac{AE}{AK}\). Theo Talet đảo có EF // IK.
Xét tam giác AIK có EF // IK >> AEF đồng dạng AIK ( bạn tự cm, quá dễ) >> góc AFE = góc AIK và góc AEF = góc AKI

Xét tam giác AFL và tam giác AID : chung góc A và AFL = AID (cmt) >> AFL đồng dạng AID >> ALF = ADI đồng vị >> ID // EL

CMTT thì LE // DK. Có E,L,F thẳng hàng nên theo tiên đề Euclid suy ra I,D,K thẳng hàng.


 

5 tháng 4 2021

bạn ơi, AFL=AID đang cần chứng minh mà, AFL=AIK mới đúng. nếu AFL=AID=AIK thì I,D,K thẳng hàng rồi.

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

5 tháng 1 2022

ANH CS THỂ THAM KHẢO 

a , b tự lm nha ( dễ mà )

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

Và MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

23 tháng 12 2020

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

20 tháng 3 2021

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

23 tháng 2 2022

a) vì AD vuông góc BC => ADC = ADB =90 

BE vuông góc AC => AEB = BEC =90 

Xét tứ giác ABDE có 

AEB = ADB =90 mà E và D là 2 đỉnh kề => tứ giác nt ( dhnb) 

=> CAD = CBH (góc nt chắn ED) (1)
mà H đối xứng với I qua D => D là trung điểm => BD là trung tuyến của HI

ta lại có AD vuông góc BC tại D => BD vuông góc với HI ( H,I thuộc AD) => BD là đường cao của HI 

xét tam giác BHI có 

BD là trung tuyến của HI

BD là đường cao của HI 

=> tam giác cân => BD là pg góc B = > IBC =CBH (2) 

từ 1 và 2 => CAD = CBI 

b) Xét tam giác AMI và tam giác ADB có 

góc A chung 

ADB = AMI =90 

=> tam giác đồng dạng (gg) => ABD = AIM (2 góc tư) (3)

Gọi GD của CH và AB là F vì 2 đường cao AD và BE cắt nhau tại H => CH là đường cao => CF là đường cao => CF vuông góc AB tại F => CFB =90 

xét tam giác CHD và tam giác CBF có 

góc C chung 

góc ADC = góc CFB =90 

=> đồng dạng (gg) 

=> CHD=CBA (2 góc tư) (4)

ta lại có vì CD vuông góc với HI

CD là trung tuyến của HI => tam giác CHI cân tại C => AIC = CHD (tc) (5)

từ 3-4-5 => AIM = AIC 

18 tháng 12 2021

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

18 tháng 12 2021

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

2 tháng 4 2020

a) Xét \(\Delta EBC\)có \(\hept{\begin{cases}BE\perp AC\\DM\perp AC\end{cases}\Rightarrow}\)DM//EB => \(\frac{MC}{CE}=\frac{CD}{CB}\left(1\right)\)

Xét \(\Delta\)CFB có: \(\hept{\begin{cases}ND\perp FC\\BF\perp FC\end{cases}\Rightarrow}\)ND//BF => \(\frac{NC}{FC}=\frac{CD}{CB}\left(2\right)\)

Từ (1)(2) => \(\frac{MC}{CE}=\frac{NC}{FC}\Rightarrow MC\cdot FC=CE\cdot NC\left(đpcm\right)\)

b) Xét tam giác FBC có:\(\hept{\begin{cases}QD\perp FB\\FC\perp FB\end{cases}\Rightarrow}\)QD//FC => \(\frac{QF}{FB}=\frac{DC}{BD}\)

mà \(\frac{DC}{BD}=\frac{MC}{CE}=\frac{NC}{FC}\Rightarrow\frac{QF}{FB}=\frac{MC}{CE}=\frac{NC}{FC}\)hay \(\frac{QF}{FB}=\frac{NC}{CF}=\frac{MC}{CE}\)

=> Q,N,M thẳng hàng mà \(\frac{NC}{CF}=\frac{MC}{CE}\)=> MN//EF => QM//EF (đpcm)

c) Xét tam giác BEC có \(\hept{\begin{cases}PD\perp BE\\CE\perp BE\end{cases}}\)=> PD//EC => \(\frac{PE}{EB}=\frac{DC}{BC}\)

mà \(\frac{DC}{CB}=\frac{NK}{CF}=\frac{MC}{CE}=\frac{QF}{FB}\)

=> M,N,Q thẳng hàng (đpcm)