K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

a) vì AD vuông góc BC => ADC = ADB =90 

BE vuông góc AC => AEB = BEC =90 

Xét tứ giác ABDE có 

AEB = ADB =90 mà E và D là 2 đỉnh kề => tứ giác nt ( dhnb) 

=> CAD = CBH (góc nt chắn ED) (1)
mà H đối xứng với I qua D => D là trung điểm => BD là trung tuyến của HI

ta lại có AD vuông góc BC tại D => BD vuông góc với HI ( H,I thuộc AD) => BD là đường cao của HI 

xét tam giác BHI có 

BD là trung tuyến của HI

BD là đường cao của HI 

=> tam giác cân => BD là pg góc B = > IBC =CBH (2) 

từ 1 và 2 => CAD = CBI 

b) Xét tam giác AMI và tam giác ADB có 

góc A chung 

ADB = AMI =90 

=> tam giác đồng dạng (gg) => ABD = AIM (2 góc tư) (3)

Gọi GD của CH và AB là F vì 2 đường cao AD và BE cắt nhau tại H => CH là đường cao => CF là đường cao => CF vuông góc AB tại F => CFB =90 

xét tam giác CHD và tam giác CBF có 

góc C chung 

góc ADC = góc CFB =90 

=> đồng dạng (gg) 

=> CHD=CBA (2 góc tư) (4)

ta lại có vì CD vuông góc với HI

CD là trung tuyến của HI => tam giác CHI cân tại C => AIC = CHD (tc) (5)

từ 3-4-5 => AIM = AIC 

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f...
Đọc tiếp

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

 

0
1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và ea) chứng minh tứ giác bdmc, adhm...
Đọc tiếp

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

0
22 tháng 8 2021

a) Ta có tứ giác AIMJ là hcn=> AIMJ nội tiếp đường tròn đường kính AM,  IJ

Vì N đối xứng với M qua IJ => góc JNI = góc JMI = 90o ha N thuộc đường tròn đường kính AM và IJ => góc ANM = 90o 

mà I thuộc trung trực MN => tam giác MIC vuông cân tại I =>  I thuộc trung trực MC

=> I là tâm đường tròn ngoại tiếp tam giác MNC

=> góc MNC =1/2 góc MIC = 450 

=> góc ABC + góc ANC = 45+90+45=1800

Hay tứ giác ABCN nội tiếp đường tròn (T) (ĐPCM)

22 tháng 8 2021

b)CM: 1/PM<1/PB+1/PC ?

Ta có: tam giác MPC đồng dạng tam giác MBA => PM/MB=PC/BA => PM/PC=MB/BA (1)

TAM GIÁC MBP đồng dạng tam giác MAC => PM/MC=PB/CA=> PM/PB=MC/AC      (2)

Cộng vế theo về của (1) và (2) ta có:

PM/PC+PM/PB=MB/BC+MC/AC=MB/BA+MC/BA=AC/BA>1 => ĐPCM

c) Áp dụng hệ thức giữa cạnh và đường cao ta có:

DH2=DK.DC => DA2=DK.DC

=> DA/DC=DK/DA => TAM GIÁC DKA đồng dạng tam giác DAC => góc AKD =DAC =45o

=> góc ABH+ góc AKH = 45+45+90=1800=> TỨ GIÁC ABHK nội tiếp

=> Góc AKB =AHB =90 = GÓC HKC 

Mà góc ABK =AHK=KCH => đpcm

1 tháng 8 2023

.Ta có :

AH⊥BC,HE⊥AB→\(\widehat{AEH}=\widehat{AHB}\)

=> \(\Delta AEH\approx\Delta AHB\)(g.g)

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)

=>AH\(^2\)=AE.AB

Lam tuong tu ta dc AH\(^2\)=AF.AC

=> AE.AB=AF.AC

 

a: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nen AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB