a) Cho tam giác ABC vuông tại A, Đường cao AH = 2cm. Tính các cạnh của tam giác ABC biết : BH = 1cm, HC = 3cm
b) cho tam giác ABC đều có AB= 5cm. Tính độ dài đường cao BH?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)
a: Đề sai rồi bạn
a.=> BC = BH + CH = 1 + 3 = 4 cm
áp dụng định lý pitago vào tam giác vuông AHB
\(AB^2=HB^2+AH^2\)
\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)
áp dụng định lí pitago vào tam giác vuông AHC
\(AC^2=AH^2+HC^2\)
\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)
a, Theo định lí Pytago tam giác ABH vuông tại H
\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm
-> BC = HB + HC = 4 cm
b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến
=> AH = AC/2 = 5/2
Theo định lí Pytago tam giác ABH vuông tại H
\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)
a) Xét tam giác ABH vuông tại H. Áp dụng định lý Pi-ta-go trong tam giác vuông ta có:
BH2+AH2=AB2
<=> 1+4=5(cm)
<=> AB=\(\sqrt{5}\)cm
Xét tam giác AHC vuông tại H. Áp dụng định lí Pi-ta-go ta có:
HC2+AH2=AC2
<=> 9+4=13(cm)
<=> AC=\(\sqrt{13}\left(cm\right)\)
Xét BC=BH+HC=1+3=4(cm)
b) Áp dụng công thức tính đường cao trong tam giác đều, ta có:
BH=\(5\cdot\frac{\sqrt{3}}{2}=\frac{5\sqrt{3}}{2}\)
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
a)
+ Ta có: \(BC=BH+HC.\)
\(\Rightarrow BC=1+3\)
\(\Rightarrow BC=4\left(cm\right).\)
+ Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:
\(AB^2=AH^2+BH^2\) (định lí Py - ta - go).
\(\Rightarrow AB^2=2^2+1^2\)
\(\Rightarrow AB^2=4+1\)
\(\Rightarrow AB^2=5\)
\(\Rightarrow AB=\sqrt{5}\left(cm\right)\) (vì \(AB>0\)).
+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:
\(AC^2=AH^2+HC^2\) (định lí Py - ta - go).
\(\Rightarrow AC^2=2^2+3^2\)
\(\Rightarrow AC^2=4+9\)
\(\Rightarrow AC^2=13\)
\(\Rightarrow AC=\sqrt{13}\left(cm\right)\) (vì \(AC>0\)).
Vậy các cạnh của \(\Delta ABC\) là: \(AB=\sqrt{5}\left(cm\right);AC=\sqrt{13}\left(cm\right);BC=4\left(cm\right).\)
Chúc bạn học tốt!