Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)
a: Đề sai rồi bạn
a.=> BC = BH + CH = 1 + 3 = 4 cm
áp dụng định lý pitago vào tam giác vuông AHB
\(AB^2=HB^2+AH^2\)
\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)
áp dụng định lí pitago vào tam giác vuông AHC
\(AC^2=AH^2+HC^2\)
\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)
a, Theo định lí Pytago tam giác ABH vuông tại H
\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm
-> BC = HB + HC = 4 cm
b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến
=> AH = AC/2 = 5/2
Theo định lí Pytago tam giác ABH vuông tại H
\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Áp dụng ĐL Pytago vào tam giác ABC vuông tại A ta có :
\(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{36}=6\left(cm\right)\)
Có diện tích tam giác ABC \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AB.AC\Leftrightarrow AH.BC=AB.AC\)
\(\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=\frac{48}{10}=4,8\left(cm\right)\)
Áp dụng ĐL Pytago vào tam giác ABH vuông tại H ta có :
\(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=\sqrt{12,96}=3,6\left(cm\right)\)
Áp dụng ĐL Pytago vào tam giác ACH vuông tại H ta có :
\(CH=\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=\sqrt{40,96}=6,4\left(cm\right)\)
a) Xét tam giác ABH vuông tại H. Áp dụng định lý Pi-ta-go trong tam giác vuông ta có:
BH2+AH2=AB2
<=> 1+4=5(cm)
<=> AB=\(\sqrt{5}\)cm
Xét tam giác AHC vuông tại H. Áp dụng định lí Pi-ta-go ta có:
HC2+AH2=AC2
<=> 9+4=13(cm)
<=> AC=\(\sqrt{13}\left(cm\right)\)
Xét BC=BH+HC=1+3=4(cm)
b) Áp dụng công thức tính đường cao trong tam giác đều, ta có:
BH=\(5\cdot\frac{\sqrt{3}}{2}=\frac{5\sqrt{3}}{2}\)