Cho tứ giác ABCD nội tiếp, AC cắt BD tại I, AD cắt BC tại J.
CMR: a) IA.IC=IB.ID
b) JA.ID=JB.JC
c) AB.CD+BC.AD=AC.BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bđt ptoleme nhé bạn.
Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB
a) Xét ΔIAD và ΔIBC có
\(\widehat{IAD}=\widehat{IBC}\)(gt)
\(\widehat{AID}=\widehat{BIC}\)(hai góc đối đỉnh)
Do đó: ΔIAD\(\sim\)ΔIBC(g-g)
b)
Sửa đề: \(IA\cdot IC=IB\cdot ID\)
Ta có: ΔIAD\(\sim\)ΔIBC(cmt)
nên \(\dfrac{IA}{IB}=\dfrac{ID}{IC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(IA\cdot IC=IB\cdot ID\)(đpcm)
a/ Ta có
IH vuông góc AB => ^AHI = 90
IK vuông góc AD => ^AKI = 90
=> H và K cùng nhìn AI dưới hai góc bằng nhau => AHIK là tứ giác nội tiếp
b/ Xét tam giác ADI và tam giác BCI có
^AID=^BIC (góc đối đỉnh)
sđ ^DAC = sđ ^DBC = 1/2 sđ cung CD (góc nội tiếp) => ^DAC=^DBC
=> tg ADI đồng dạng tg BCI
=>\(\frac{IA}{IB}=\frac{ID}{IC}\)⇒IA.IC=IB.ID
c/
Xét tứ giác nội tiếp AHIK có
^HIK = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (1)
^DAC = ^KHI (2 góc nội tiếp chắn cùng 1 cung) (2)
Xét tứ giác nội tiếp ABCD có
^BCD = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (3)
^DAC = ^DBC (hai góc nội tiếp chắn cùng 1 cung) (4)
Xét hai tam giác HIK và tam giác BCD
Từ (1) và (3) => ^HIK = ^BCD
Từ (2) và (4) => ^KHI = ^DBC
=> tam giác HIK đồng dạng với tam giác BCD
Giả sử \(\widehat{ACB}>\widehat{ACD}\) trên BD lấy điểm E sao cho \(\widehat{BCE}=\widehat{ACD}\)
Xét △ACD và △BCE có
\(\widehat{BCE}=\widehat{ACD}\)(gt)
\(\widehat{CAD}=\widehat{CBE}\)(2 góc nội tiếp cùng chắn cung \(\stackrel\frown{CD}\))
Suy ra △ACD \(\sim\) △BCE(g-g)
\(\Rightarrow\frac{AC}{BC}=\frac{AD}{BE}\Rightarrow BC.AD=AC.BE\)(1)
Xét △ACB và △DCE có
\(\widehat{BCE}=\widehat{ACD}\Rightarrow\)\(\widehat{BCE}+\widehat{ECA}=\widehat{ACD}+\widehat{ECA}\Rightarrow\widehat{ACB}=\widehat{DCE}\)
\(\widehat{CDE}=\widehat{CAB}\)(2 góc nội tiếp cùng chắn cung \(\stackrel\frown{BC}\))
Suy ra △ACB \(\sim\) △DCE(g-g)
\(\Rightarrow\frac{AC}{DC}=\frac{AB}{DE}\Rightarrow AB.CD=AC.DE\)(2)
Cộng (1) và (2)\(\Leftrightarrow AB.CD+BC.AD=AC.BE+AC.DE=AC\left(BE+CE\right)=AC.BD\)
Vậy \(AB.CD+BC.AD=AC.BD\)
a) Xét \(\Delta IAD\)và \(\Delta IBC\)có:
\(\widehat{AID}=\widehat{BIC}\)(2góc đối đỉnh)
\(\widehat{ADI}=\widehat{BCI}\)(cùng nhìn cung AB)
\(\Rightarrow\Delta IAD\)đồng dạng với \(\Delta IBC\)
\(\Rightarrow\frac{IA}{IB}=\frac{ID}{IC}\Rightarrow IA.IC=IB.ID\)(ĐPCM)
b)Xét \(\Delta JAC\)và \(\Delta JBD\)có:
\(\widehat{J}\)là góc chung
\(\widehat{JCA}=\widehat{JDB}\)
\(\Rightarrow\)\(\Delta JAC\)đồng dạng với\(\Delta JBD\)
\(\Rightarrow\frac{JA}{JB}=\frac{JC}{JD}\Rightarrow JA.JD=JB.JC\)(ĐPCM)