cho a,b,c>0 và a+b+c=1.Tìm GTNN của:
\(M=\sqrt{a^2-ac+c^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2}M=\sqrt{\left(a-b\right)^2+\left(a^2+b^2\right)}+\sqrt{\left(b-c\right)^2+\left(b^2+c^2\right)}+\sqrt{\left(c-a\right)^2+\left(c^2+a^2\right)}\ge\sqrt{2ab}+\sqrt{2bc}+\sqrt{2ca}\)\(\Leftrightarrow M\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Dấu bằng xảy ra khi và chỉ khi a = b, b = c, c = a \(\Leftrightarrow\)a = b = c = \(\frac{1}{3}\)(vì a + b + c = 1).
Suy ra : \(M\ge\sqrt{\frac{1}{3}.\frac{1}{3}}+\sqrt{\frac{1}{3}.\frac{1}{3}}+\sqrt{\frac{1}{3}.\frac{1}{3}}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
Vậy GTNN của M là 1 khi a = b = c = \(\frac{1}{3}\)
\(S=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\\ =\sqrt{a^2+2ab+b^2-3ab}+\sqrt{b^2+2bc+c^2-3bc}+\sqrt{c^2+2ca+a^2-3ca}\\ =\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\)
Áp dụng BDT : Cô-si:
\(\Rightarrow S=\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\\ \ge\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot\left(a+b\right)^2}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\left(b+c\right)^2}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\left(c+a\right)^2}\\ =\sqrt{\dfrac{1}{4}\left(a+b\right)^2}+\sqrt{\dfrac{1}{4}\left(b+c\right)^2}+\sqrt{\dfrac{1}{4}\left(c+a\right)^2}\\ =\dfrac{1}{2}\left(a+b\right)+\dfrac{1}{2}\left(b+c\right)+\dfrac{1}{2}\left(c+a\right)\\ =\dfrac{1}{2}\left(a+b+b+c+c+a\right)\\ =a+b+c\\ =2019\)
Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}a=b=c\\a+b+c=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=673\\b=673\\c=673\end{matrix}\right.\)
Vậy \(S_{Min}=2019\) khi \(a=b=c=673\)
Áp dụng BĐT Cauchy swarchz ta có:
A=\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2} \)
Mà \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1 \)
=>\(A\ge\frac{1}{2} \)
Dấu "=" xảy ra <=>a=b=c=\(\frac{1}{3} \)
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\ge\frac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự: \(\sqrt{\frac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\) ; \(\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge ca+2b^2\)
Cộng vế với vế:
\(VT\ge2\left(a^2+b^2+c^2\right)+ab+bc+ca=2+ab+bc+ca\)