Tính nhanh:
a) 172-14.17+49
b) 20212-20202
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)
b)
\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)
Lời giải:
a. $153^2-53^2=(153-53)(153+53)=100.206=20600$
b.
$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$
$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$
$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$
$=2020+2019+2018+2017+...+2+1$
$=\frac{2020.2021}{2}=2041210$
\(\sqrt{2021^2+2022^2+2021^2.2022^2}\)
\(=\sqrt{2021^2+\left(2021+1\right)^2+\left(2021.2022\right)^2}\)
\(=\sqrt{2021^2+2021^2+2.2021+1+\left(2021.2022\right)^2}\)
\(=\sqrt{2.2021.2022+1+\left(2021.2022\right)^2}\)
\(=\sqrt{\left(2021.2022+1\right)^2}\)
\(=2021.2022+1\) là 1 số nguyên (đpcm)
x0x0x : X x 3 – 20202
= 10101 x 3 – 20202
= 30303 – 20202
= 10101
a) 544544 – 444444 = 544.1001 – 444.1001 = 1001.(544 – 444) = 1001.100 = 100100
b) 131313 – 10101 – 20202 = 10101.13 – 10101 – 10101.2
= 10101.(13 – 1 – 2) = 10101.10 = 101010
Bài 1:
$-1+2-3+4-5+6-7+8-...-2019+2020-2021$
$=(2+4+6+8+...+2020)-(1+3+5+...+2021)$
$=(\frac{2020-2}{2}+1).\frac{2020+2}{2}-(\frac{2021-1}{2}+1).\frac{2021+1}{2}=1021110- 1022121=-1011$
Bài 1 cách 2:
$A=-1+2-3+4-5+6-7+8-....-2019+2020-2021$
$=-1+(2-3)+(4-5)+(6-7)+....+(2020-2021)$
$=-1+\underbrace{(-1)+(-1)+...+(-1)}_{1010}=-1+(-1).1010=-1011$
a. Ta có: \(17^2-14.17+49=17^2-2.7.17+7^2=\left(17-7\right)^2=10^2=100\)
b. \(2021^2-2020^2=\left(2021-2020\right)\left(2021+2020\right)=4041\)