K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

\(\frac{a^4-a^3+a-1}{a^4-a^3+2a^2-a+1}\)

\(=\frac{a^3\left(a-1\right)+\left(a-1\right)}{a^2\left(a^2-a+1\right)+\left(a^2-a+1\right)}\)

\(=\frac{\left(a-1\right)\left(a^3+1\right)}{\left(a^2-a+1\right)\left(a^2+1\right)}\)

\(=\frac{\left(a-1\right)\left(a+1\right)\left(a^2-a+1\right)}{\left(a^2-a+1\right)\left(a^2+1\right)}\)

\(=\frac{\left(a-1\right)\left(a+1\right)}{\left(a^2+1\right)}=\frac{a^2-1}{a^2+1}=1-\frac{2}{a^2+1}\)

Vậy : \(\frac{a^4-a^3+a-1}{a^4-a^3+2a^2-a+1}\)\(=1-\frac{2}{a^2+1}\)

11 tháng 2 2017

Ta có

B   =   2 a − 3 a + 1 − a − 4 2 − a a + 7   =   2 a 2   +   2 a   –   3 a   –   3   –   ( a 2   –   8 a   +   16 )   –   ( a 2   +   7 a )     =   2 a 2   +   2 a   –   3 a   –   3   –   a 2   +   8 a   –   16   –   a 2   –   7 a     =   -   19

Đáp án cần chọn là: D

2 tháng 2 2018

Ta có \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(=\frac{a^3+2a^2+2a+1-2a-2}{a^3+2a^2+2a+1}\)

\(=\frac{a^3+2a^2+2a+1}{a^3+2a^2+2a+1}-\frac{2a-2}{a^3+2a^2+2a+1}\)

\(=1-\frac{2a-1}{a^3+2a^2+2a+1}\)

2 tháng 5 2016

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)

\(A=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Vậy \(A=\frac{a^2+a-1}{a^2+a+1}\)

2 tháng 5 2016

1 8892219

17 tháng 1 2016

=\(\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

9 tháng 5 2016

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)

\(A=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Vậy A=..................

9 tháng 5 2016

A=\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

A=\(\frac{a^3+2a^2+1-2}{a^3+2a^2+1+2a^2}\)

A=\(\frac{a^3+2a^2+1}{a^3+2a^2+1}+\frac{-2}{a^3+2a^2+1+2a^2}\)

A=\(1+\frac{-2}{a^3+2a^2+1+2a^2}\)