Giả sử a , b , c là các số thực dương sao cho a+b+c=1
Chứng minh rằng : \(2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)
\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\) (vì abc=1) (*)
Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\) (vì abc=1)
=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\) (**)
Từ (*), (**)=> đpcm
Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3
\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)
Tương tự rồi cộng lại:
\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)(ab+bc+ac)\geq (a+b+c)^2\)
\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\geq \left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)^2\)
Nhân theo vế 2 BĐT trên:
\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2(ab+bc+ac).\frac{a+b+c}{abc}\geq [(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})]^2\)
\(\Leftrightarrow \left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq [(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})]^2\)
\(\Leftrightarrow \left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\geq (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Theo bđt Cauchy - Schwart ta có:
\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)
\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)
Đặt \(ab+bc+ca=x;abc=y\).
Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)
\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )
Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1
\(2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\)
Thay thế \(a+b+c=1\)
\(\Leftrightarrow2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{2a+b+c}{b+c}+\frac{a+2b+c}{a+c}+\frac{a+b+2c}{a+b}\)
\(\Leftrightarrow2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}+3\)
\(\Leftrightarrow\frac{2b}{a}+\frac{2c}{b}+\frac{2a}{c}\ge\frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}+3\)
\(\Leftrightarrow\left(\frac{2b}{a}-\frac{2b}{a+c}\right)+\left(\frac{2c}{b}-\frac{2c}{a+b}\right)+\left(\frac{2a}{c}-\frac{2a}{b+c}\right)\ge3\)
\(\Leftrightarrow\frac{2bc}{a\left(a+c\right)}+\frac{2ca}{b\left(a+b\right)}+\frac{2ab}{c\left(b+c\right)}\ge3\)
\(\Leftrightarrow\frac{bc}{a\left(a+c\right)}+\frac{ca}{b\left(a+b\right)}+\frac{ab}{c\left(b+c\right)}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{\left(bc\right)^2}{abc\left(a+c\right)}+\frac{\left(ca\right)^2}{abc\left(a+b\right)}+\frac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\frac{3}{2}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\frac{\left(bc\right)^2}{abc\left(a+c\right)}+\frac{\left(ca\right)^2}{abc\left(a+b\right)}+\frac{\left(ab\right)^2}{abc\left(b+c\right)}\)
\(\ge\frac{\left(ab+bc+ca\right)^2}{abc\left(a+b+c+a+b+c\right)}=\frac{\left(ab+bc+ca\right)^2}{2abc}\)
Chứng minh rằng : \(\frac{\left(ab+bc+ca\right)^2}{2abc}\ge\frac{3}{2}\)
\(\Leftrightarrow2\left(ab+bc+ca\right)^2\ge6abc\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}a^2b^2+b^2c^2\ge2\sqrt{a^2b^4c^2}=2ab^2c\\b^2c^2+c^2a^2\ge2\sqrt{a^2b^2c^4}=2abc^2\\a^2b^2+c^2a^2\ge2\sqrt{a^2b^2c^2}=2a^2bc\end{cases}}\)
\(\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(đpcm\right)\)
Vì \(\frac{\left(ab+bc+ca\right)^2}{2abc}\ge\frac{3}{2}\)
Vậy \(\frac{\left(bc\right)^2}{abc\left(a+c\right)}+\frac{\left(ca\right)^2}{abc\left(a+b\right)}+\frac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\frac{3}{2}\)
\(\Leftrightarrow2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\left(đpcm\right)\)
Chúc bạn học tốt !!!