\(\frac{a}{b^2\left(ca...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2021

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

26 tháng 2 2021

sai rồi nhé bạn 

20 tháng 7 2019

Em chỉ giải ra được 1 TH dấu bằng thôi: a = b = c (còn trường hợp a = b; c=0 và các hoán vị thì em chịu, vì khi xét dấu = trong bđt thì em chỉ xảy ra 1 th)

Áp dụng BĐT Cauchy-Schwarz dạng Engel;

\(VT\ge\frac{16}{a^2+b^2+c^2+\left(a+b+c\right)^2}\ge\frac{16}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)^2}\)\(=\frac{12}{\left(a+b+c\right)^2}\) (đpcm)

Đẳng thức xảy ra khi a = b = c

20 tháng 7 2019

hay là có khi nào em xét dấu đẳng thức sai ko nhỉ? :))

20 tháng 12 2021

Ai giải được không ?

26 tháng 3 2016

a) \(A=\left[\left(\frac{1}{5}\right)^2\right]^{\frac{-3}{2}}-\left[2^{-3}\right]^{\frac{-2}{3}}=5^3-2^2=121\)

b) \(B=6^2+\left[\left(\frac{1}{5}\right)^{\frac{3}{4}}\right]^{-4}=6^2+5^3=161\)

c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}=\frac{a^{\sqrt{5}+3}.a^{5-\sqrt{5}}}{a^{\left(2\sqrt{2}\right)^2-1^2}}\)

                              \(=\frac{a^{\sqrt{5}+3+5-\sqrt{5}}}{a^{8-1}}=\frac{a^8}{a^7}=a\)

d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)

        \(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left[1-2\sqrt{\frac{b}{a}}+\left(\sqrt{\frac{b}{a}}\right)^2\right]\)

        \(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left(1-\sqrt{b}a\right)^2\)

        

26 tháng 3 2016

a) Ta có 

\(a^2+4b^2=12ab\Leftrightarrow\left(a+2b\right)^2=16ab\)

Do a,b dương nên \(a+2b=4\sqrt{ab}\) khi đó lấy logarit cơ số 10 hai vế ta được :

\(lg\left(a+2b\right)=lg4+\frac{1}{2}lg\left(ab\right)\)

hay 

\(lg\left(a+2b\right)-2lg2=\frac{1}{2}\left(lga+lgb\right)\)

 

b) Giả sử a,b,c đều dương khác 0. Để biểu diễn c theo a, ta rút lgb từ biểu thức \(a=10^{\frac{1}{1-lgb}}\) và thế vào biểu thức \(b=10^{\frac{1}{1-lgc}}\). Sau khi lấy logarit cơ số 10 2 vế, ta có :

\(a=10^{\frac{1}{1-lgb}}\Rightarrow lga=\frac{1}{1-lgb}\Rightarrow lgb=1-\frac{1}{lga}\)

Mặt khác , từ \(b=10^{\frac{1}{1-lgc}}\) suy ra \(lgb=\frac{1}{1-lgc}\) Do đó :

\(1-\frac{1}{lga}=\frac{1}{1-lgc}\)

\(\Rightarrow1-lgx=\frac{lga}{lga-1}=1+\frac{1}{lga-1}\)

\(\Rightarrow lgc=\frac{1}{1-lga}\)

Từ đó suy ra : \(c=10^{\frac{\frac{1}{1-lga}}{ }}\)

Câu 1: Họ nguyên hàm của hàm số \(\int\frac{3\sqrt{ln\left(x\right)+1}}{x}dx\) có dạng \(ln\left(\left(xe\right)^a\right).\sqrt{ln\left(xe\right)+b}\) với \(a,b\) là các số thực. Tính \(a^2+b^2\) a) 1 b) 2 c) 4 d) 5 Câu 2: Cho hai số thực \(a,b\) \(\left(a< b\right)\) thoả mản \(\int\limits^b_a\frac{1}{\sqrt{x}}dx=2\) và \(a^2+b^2=17\). Tính \(a^b+b^{-a}\) a) \(\frac{2}{3}\) b) \(1\) c) \(0\) d) \(\frac{5}{4}\) Câu 3: Cho hàm số...
Đọc tiếp

Câu 1: Họ nguyên hàm của hàm số \(\int\frac{3\sqrt{ln\left(x\right)+1}}{x}dx\) có dạng \(ln\left(\left(xe\right)^a\right).\sqrt{ln\left(xe\right)+b}\) với \(a,b\) là các số thực. Tính \(a^2+b^2\)

a) 1

b) 2

c) 4

d) 5

Câu 2: Cho hai số thực \(a,b\) \(\left(a< b\right)\) thoả mản \(\int\limits^b_a\frac{1}{\sqrt{x}}dx=2\)\(a^2+b^2=17\). Tính \(a^b+b^{-a}\)

a) \(\frac{2}{3}\)

b) \(1\)

c) \(0\)

d) \(\frac{5}{4}\)

Câu 3: Cho hàm số \(f\left(x\right)\) xác định trên \(R\). Và thoả mản \(f\left(\sqrt{2x}\right)=f’\left(x\right)\)\(\int\limits^e_1f\left(\sqrt{ln\left(x\right)}\right)dx=3\) . Tính \(\int\limits^{\pi}_02.f\left(cos\left(2x\right)\right)dx\) bằng

a) \(0\)

b) \(2\pi\)

c) \(3\pi\)

d) \(9,425\)

Câu 4: Họ nguyên hàm của hàm số \(\int\frac{3x+a}{x^2+4}dx\) có dạng \(\frac{3}{2}ln\left(x^2+4\right)+arctan\left(\frac{x}{2}\right)+C,C\in R\). Tính \(\int\limits^{\frac{e}{a+2}}_1ln\left(x\right)dx\) bằng

a) 1

b) \(-\frac{ln\left(2^e\right)}{2}+1\)

c) \(1-\frac{ln\left(3^e\right)}{3}\)

d) Đáp án khác

Câu 5: Gọi \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\). Biết \(f”\left(x\right)=-\frac{1}{4x\sqrt{x}},f’\left(2\right)=2+\frac{1}{2\sqrt{2}}\), \(f\left(4\right)=10\)\(F\left(1\right)=1+\frac{2}{3}\). Tính \(\int\limits^1_0F\left(x\right)dx\) bằng

a) \(\frac{5}{3}\)

b) \(\frac{3}{4}\)

c) \(\frac{3}{5}\)

d) \(\frac{4}{3}\)

2
NV
5 tháng 2 2020

Câu 1:

Đặt \(\sqrt{lnx+1}=t\Rightarrow lnx=t^2-1\Rightarrow\frac{dx}{x}=2tdt\)

\(\Rightarrow I=\int3t.2t.dt=6\int t^2dt=2t^3+C\)

\(=2\sqrt{\left(lnx+1\right)^3}+C=2\left(lnx+1\right)\sqrt{lnx+1}+C\)

\(=ln\left(x.e\right)^2\sqrt{ln\left(x.e\right)+0}\Rightarrow a=2;b=0\)

Câu 2:

\(\int\limits^b_ax^{-\frac{1}{2}}dx=2x^{\frac{1}{2}}|^b_a=2\left(\sqrt{b}-\sqrt{a}\right)=2\Rightarrow\sqrt{b}-\sqrt{a}=1\)

Ta có hệ: \(\left\{{}\begin{matrix}\sqrt{b}-\sqrt{a}=1\\a^2+b^2=17\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=4\\a=1\end{matrix}\right.\) (lưu ý loại cặp nghiệm âm do \(\frac{1}{\sqrt{x}}\) chỉ xác định trên miền (a;b) dương)

NV
5 tháng 2 2020

Câu 4:

\(\int\frac{3x+a}{x^2+4}dx=\frac{3}{2}\int\frac{2x}{x^2+4}dx+a\int\frac{1}{x^2+4}dx\)

\(=\frac{3}{2}ln\left(x^2+4\right)+\frac{a}{2}arctan\left(\frac{x}{2}\right)+C\)

\(\Rightarrow a=2\)

\(\Rightarrow I=\int\limits^{\frac{e}{4}}_1ln\left(x\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{x}dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.lnx|^{\frac{e}{4}}_1-\int\limits^{\frac{e}{4}}_1dx=\frac{e}{4}.ln\left(\frac{e}{4}\right)-\frac{e}{4}+1=-\frac{ln\left(2^e\right)}{2}+1\)

Câu 5:

\(f'\left(x\right)=\int f''\left(x\right)dx=-\frac{1}{4}\int x^{-\frac{3}{2}}dx=\frac{1}{2\sqrt{x}}+C\)

\(f'\left(2\right)=\frac{1}{2\sqrt{2}}+C=2+\frac{1}{2\sqrt{2}}\Rightarrow C=2\)

\(\Rightarrow f'\left(x\right)=\frac{1}{2\sqrt{x}}+2\)

\(\Rightarrow f\left(x\right)=\int f'\left(x\right)dx=\int\left(\frac{1}{2\sqrt{x}}+2\right)dx=\sqrt{x}+2x+C_1\)

\(f\left(4\right)=\sqrt{4}+2.4+C_1=10\Rightarrow C_1=0\)

\(\Rightarrow f\left(x\right)=2x+\sqrt{x}\)

\(\Rightarrow F\left(x\right)=\int f\left(x\right)dx=\int\left(2x+\sqrt{x}\right)dx=x^2+\frac{2}{3}\sqrt{x^3}+C_2\)

\(F\left(1\right)=1+\frac{2}{3}+C_2=1+\frac{2}{3}\Rightarrow C_2=0\)

\(\Rightarrow F\left(x\right)=x^2+\frac{2}{3}\sqrt{x^3}\Rightarrow\int\limits^1_0\left(x^2+\frac{2}{3}\sqrt{x^3}\right)dx=\frac{3}{5}\)

NV
19 tháng 11 2019

\(2^x=x^2\Rightarrow xln2=2lnx\Rightarrow\frac{ln2}{2}=\frac{lnx}{x}\Rightarrow x=2\)

Ta cũng có \(\frac{2ln2}{2.2}=\frac{lnx}{x}\Rightarrow\frac{ln4}{4}=\frac{lnx}{x}\Rightarrow x=4\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)

Pt dưới: \(4logx-\frac{logx}{loge}=log4\)

\(\Leftrightarrow logx\left(4-ln10\right)=log4\Leftrightarrow logx\left(ln\left(\frac{e^4}{10}\right)\right)=log4\)

\(\Rightarrow logx=\frac{log4}{ln\left(\frac{e^4}{10}\right)}=log4.log_{\frac{e^4}{10}}e\)

\(\Rightarrow x=10^{log4.log_{\frac{e^4}{10}}e}=\left(10^{log4}\right)^{log_{\frac{e^4}{10}}e}=2^{2.log_{\frac{e^4}{10}}e}\)

\(\Rightarrow\left\{{}\begin{matrix}c=2\\d=4\end{matrix}\right.\)

Bạn tự thay kết quả và tính

21 tháng 11 2019

Em cảm ơn nhiều ạ. ❤️

Câu 1: Gọi nguyên hàm của hàm số \(\int\frac{sin\left(x\right)}{sin\left(x\right)+cos\left(x\right)}dx\) có dạng \(ax+bln\left|sin\left(x\right)+cos\left(x\right)\right|+C\) (a,b là các số hữu tỉ) và nguyên hàm của hàm số \(\int cos^2\left(x\right)dx\) có dạng \(cx+\frac{1}{2d}sin\left(dx\right)+C\) ( c,d là các số hữu tỉ) . Khi này tính \(I=2a-2b+2c+d\) bằng a) 4 b) 5 c) \(\frac{3}{2}\) d) \(\frac{25}{4}\) Câu 2. Cho hàm số...
Đọc tiếp

Câu 1: Gọi nguyên hàm của hàm số \(\int\frac{sin\left(x\right)}{sin\left(x\right)+cos\left(x\right)}dx\) có dạng \(ax+bln\left|sin\left(x\right)+cos\left(x\right)\right|+C\) (a,b là các số hữu tỉ) và nguyên hàm của hàm số \(\int cos^2\left(x\right)dx\) có dạng \(cx+\frac{1}{2d}sin\left(dx\right)+C\) ( c,d là các số hữu tỉ) . Khi này tính \(I=2a-2b+2c+d\) bằng

a) 4

b) 5

c) \(\frac{3}{2}\)

d) \(\frac{25}{4}\)

Câu 2. Cho hàm số \(f\left(x\right)=sin\left(ln\left(x\right)\right)\)\(g\left(x\right)=cos\left(ln\left(x\right)\right)\)

a) Tích nguyên hàm của \(\int\left[f\left(x\right)-g\left(x\right)\right]dx\)

b) Biết \(\int\limits^{e^{\pi}}_1f\left(x\right)dx=\frac{1}{a}\left(e^b+c\right)\) . Tính \(\left(a-c\right)^2\cdot b\)

Câu 3: Cho hàm số \(f\left(x\right)\) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mản điều kiện \(f\left(2020x+2019\right)=2020f\left(x\right),\forall x\in R.\) Tính tích phân \(\int\limits^1_03\left[f\left(x\right)\right]^2dx\) bằng

a) \(\frac{7}{3}\left[f\left(1\right)\right]^2\)

b) \(\frac{3}{7}\left(f\left(1\right)\right)^2\)

c) \(7\left[f\left(-1\right)\right]^2\)

d\(\frac{3}{7}\left[f\left(-1\right)\right]^2\)

2
NV
9 tháng 2 2020

Câu 1:

\(\int\frac{sinx}{sinx+cosx}dx=\frac{1}{2}\int\frac{sinx+cosx+sinx-cosx}{sinx+cosx}dx=\frac{1}{2}\int dx-\frac{1}{2}\int\frac{cosx-sinx}{sinx+cosx}dx\)

\(=\frac{1}{2}x-\frac{1}{2}\int\frac{d\left(sinx+cosx\right)}{sinx+cosx}=\frac{1}{2}x-\frac{1}{2}ln\left|sinx+cosx\right|+C\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-\frac{1}{2}\end{matrix}\right.\)

\(\int cos^2xdx=\int\left(\frac{1}{2}+\frac{1}{2}cos2x\right)dx=\frac{1}{2}x+\frac{1}{4}sin2x+C\)

\(\Rightarrow\left\{{}\begin{matrix}c=\frac{1}{2}\\d=2\end{matrix}\right.\) \(\Rightarrow I=5\)

NV
9 tháng 2 2020

Câu 2:

\(I=\int\left(sin\left(lnx\right)-cos\left(lnx\right)\right)dx=\int sin\left(lnx\right)dx-\int cos\left(lnx\right)dx=I_1-I_2\)

Xét \(I_2=\int cos\left(lnx\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=cos\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\frac{1}{x}sin\left(lnx\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I_2=x.cos\left(lnx\right)+\int sin\left(lnx\right)dx=x.cos\left(lnx\right)+I_1\)

\(\Rightarrow I=I_1-\left(x.cos\left(lnx\right)+I_1\right)=-x.cos\left(lnx\right)+C\)

b/ \(I=\int\limits sin\left(lnx\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=sin\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{x}cos\left(lnx\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.sin\left(lnx\right)-\int cos\left(lnx\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=cos\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\frac{1}{x}sin\left(lnx\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x\left[sin\left(lnx\right)-cos\left(lnx\right)\right]-I\)

\(\Rightarrow I=\frac{1}{2}x\left[sin\left(lnx\right)-cos\left(lnx\right)\right]|^{e^{\pi}}_1=\frac{1}{2}\left(e^{\pi}+1\right)\)

\(\Rightarrow a=2;b=\pi;c=1\)