Cho tứ giác ABCD và các điểm E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA.
a. Chứng minh rằng tứ giác EFGH là hình bình hành
b. Hai đường chéo của tứ giác ABCD phải có điều kiện gi thì EFGH là hình thoi, hình chữ nhật, hình vuông.
Giải giùm mình với mình đang cần gấp
a) nối A với C , B với D được:
EF // AC ( đường trung bình của tam giác BAC)
HG // AC ( " " " " " " ) suy ra EF // AC do cùng // AC
HE // DB ( đường trung bình tam giác ADB )
FG // DB ( " " " " " " ) suy ra HE // FG do cùng // với DB
Xét tứ giác EFGH có 2 cặp cạnh đối song song nên EFGH là hình bình hành
b) EFGH là hình ....
Thoi , suy ra EH = GH nên AC=BD ( do là đường trung bình của hai tam giác ADB,ADC)
vì AC = BD nên ABCD là hình thang cân
Chữ nhật, suy ra HE vuông góc với HG nên AC vuông góc với BD
Hình vuông , kết hợp 2 yếu tố của 2 hình trên được AC=BD và AC vuông góc với BD.
Tích nha☺