K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

Tham khảo

nối đường chéo AC
Trong ∆ABC ta có
E là trung điểm của AB
F là trung điểm của BC
Nên EF là đường trung bình của ∆ABC
EF//=1/2AC(1)
(Sd tính chất của đng trung bình)
Chứng minh tương tự với ∆ADC
=> HG//=1/2AC(2)
Từ (1) và(2) suy ra EF//=HG
Vậy tứ giác EFGHlaf hình bình hành
Vì có một cặp đối song song và bằng nhau

26 tháng 11 2021

Sd là j z bn

 

10 tháng 12 2021

b: Xét ΔABC có 

M là trung điểm của BA

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

10 tháng 12 2021

a: \(\widehat{D}=60^0\)

a: Xét ΔBAC có

E,F lần lượt là trung điểm của BA,BC

=>EF là đường trung bình

=>EF//AC và EF=AC/2

Xét ΔCDA có

G,H lần lượt là trung điểm của DC,DA

=>GH là đường trung bình

=>GH//AC và GH=AC/2

=>EF//GH và EF=GH

Xét tứ giác EFGH có

EF//GH

EF=GH

=>EFGH là hình bình hành

b: Để EFGH là hình chữ nhật thì HE vuông góc EF

=>AC vuông góc BD

19 tháng 10 2021

a: Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của DC

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//GF và EH=GF

hay EHGF là hình bình hành

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình

=>EF//AC và EF=AC/2(1)

Xét ΔCDA có 

G là trung điểm của CD

H là trung điểm của DA

Do đó: GH là đường trung bình

=>GH//AC và GH=AC/2(2)

Từ (1) và (2) suy ra EF//GH và EF=GH

hay EFGH là hình bình hành

b: EF=GH=AC/2=3(cm)

FG=EH=BD/2=4(cm)

30 tháng 8 2016

THam khảo nha : 

Xét bài toán: Cho tam giác ABC.ABC. Dựng hình vuông ABEFABEF và ACGHACGH phía ngoài tam giác. P,P, QQ theo thứ tự là tâm của hình vuông ABEFABEF và ACGH.ACGH. Lấy MMtrung điểm BC.BC. Chứng minh tam giác PQMPQM vuông cân tại M.M.

Lời giải: 

Dễ dàng chứng minh được MPMP và MQMQ theo thứ tự là đường trung bình của tam giác BCFBCF và BCH.BCH.

Suy ra MP∥CF ; MP=12CFMP∥CF ; MP=12CF và MQ∥BH ; MQ=12BH.   (1)MQ∥BH ; MQ=12BH.   (1)

Ta có: 

ˆBAH=ˆBAF+ˆFAH=90∘+ˆFAHBAH^=BAF^+FAH^=90∘+FAH^

ˆCAF=ˆCAH+ˆFAH=90∘+ˆFAHCAF^=CAH^+FAH^=90∘+FAH^

Do đó ˆBAH=ˆCAF.BAH^=CAF^.

Từ đó chứng minh được △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c)

⇒ˆFCA=ˆBHA⇒FCA^=BHA^

Gọi II và OO theo thứ tự là giao điểm của CFCF với BHBH và AH.AH.

Khi đó ˆOCA=ˆIHOOCA^=IHO^

Mà ˆOCA+ˆAOC=90∘OCA^+AOC^=90∘ và ˆAOC=ˆIOHAOC^=IOH^ ((đối đỉnh))

Nên ˆIHO+ˆIOH=90∘,IHO^+IOH^=90∘, suy ra ˆHIO=90∘HIO^=90∘

Do đó IH⊥IOIH⊥IO hay BH⊥CF.    (2)BH⊥CF.    (2)

Vì △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c) nên CF=BH.     (3)CF=BH.     (3)

Từ (1),(1), (2)(2) và (3)(3) suy ra MP=MQMP=MQ và MP⊥MQ.MP⊥MQ. Vậy tam giác MPQMPQ vuông cân tại M.M.

★★★★★★★★★★★★★★★★

Quay lại bài toán. Gọi MM là trung điểm ACAC

Áp dụng kết quả trên, ta chứng minh được tam giác EMFEMF và HMGHMG vuông cân tại M.M.

Từ đó chứng minh được △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c)

Rồi suy ra EG=HFEG=HF và EG⊥HF.EG⊥HF.

b)b) Gọi PP và QQ lần lượt là trung điểm HFHF và EGEG

Từ △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c) dễ dàng chứng minh được △MPF=△MQE (c.g.c)△MPF=△MQE (c.g.c)

Suy ra MP=MQMP=MQ và ˆPMF=ˆQME ⇒ ˆPMQ=ˆEMF=90∘PMF^=QME^ ⇒ PMQ^=EMF^=90∘

Do đó tam giác MPQMPQ vuông cân tại MM

Gọi NN trung điểm BD.BD. Chứng minh tương tự như trên, ta được tam giác NPQNPQ vuông cân tại N.N.

Suy ra tứ giác MPNQMPNQ là hình vuông.

10 tháng 5 2017

Áp dụng tính chất đường trung bình của tam giác ta chứng minh được:

E H = F G = 1 2 B D   v à   H G = E F = 1 2 A C

Mà AC = BD Þ EH = HG = GF= FE nên EFGH là hình thoi.