1.Tìm x.
a.9x-1=9
2.a.Chứng tỏ rằng ab(a+b) chia hết cho 2 ( a;b € N)
b.Chứng minh rằng ab + ba chia hết cho 11
c.Chứng minh aaa luôn chia hết cho 37
d.Chứng minh aaabbb luôn chia hết cho 37.
e.Chứng minh ab - ba chia hết cho 9 với a>b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|\left|2x+1\right|-2\right|=3\)
\(\Leftrightarrow\left|2x+1\right|-2=3\)
\(\Leftrightarrow\left|2x+1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
Gọi 5 số tự nhiên liên tiếp là n, n+1, n+2, n+3, n+4 \(\left(n\inℕ\right)\)
Nếu n chia hết cho 5 => đpcm
Nếu n chia 5 dư 1 => n+4 chia hết cho 5 (đpcm)
Nếu n chia 5 dư 2 => n+3 chia hết cho 5 (đpcm)
Nếu n chia 5 dư 3 => n+2 chia hết cho 5 (đpcm)
Nếu n chia 5 dư 4 => n+1 chia hết cho 5 (đpcm)
1.tim x
9x-1=9
9x-1=91
x-1=1
x=1+1
x =2
xin lỗi bạn vi minh chỉ lam đc câu 1
1/ \(9^{x-1}=9\Rightarrow\frac{9^x}{9}=9\Rightarrow9^x=81=9^2\Rightarrow x=2\)
2/
a/ Nếu cả a và b đều chẵn hoặc a hoặc b chẵn => ab(a+b) chia hết cho 2
Nếu cả a và b đều lẻ => a+b chẵn => ab(a+b) chẵn chia hết cho 2
=> ab(a+b) chia hết cho 2 với mọi a;b
b/ ab+ba=10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11
c/ aaa=a.111=a.3.37 chia hết cho 37
d/ aaabbb=aaa.1000+bbb=a.3.37.1000+b.3.37=37(a.3.1000+b.3) chia hết cho 37
e/ ab-ba=10+b-10b-a=9a-9b=9(a-b) chia hết cho 9