Cho tam giác ABC vuông tại a , lấy điểm k sao cho KB vuông góc với AB và KB=AB
a, CM 3 giác ABC=3 giác BAK
b, Cm KA=BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔKAB vuông tại K và ΔKMB vuông tại K có
KA=KM
KB chung
Do đó: ΔKAB=ΔKMB
b: Xét tứ giác ACMD có
K là trung điểm chung của AM và CD
=>ACMD là hình bình hành
=>MD//AC
=>MN//AC
Ta có: MN//AC
AB\(\perp\)AC
Do đó: MN\(\perp\)AB
a: Xét ΔACK và ΔADK co
AC=AD
góc CAK=góc DAK
AK chung
=>ΔACK=ΔADK
=>góc ADK=90 độ
=>KD vuông góc AB
b: Xét ΔACB có AK là phân giác
nên KC/AC=KB/AB
mà AC<AB
nên KC<KB
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a: Xét ΔBKA vuông tại K và ΔBKM vuông tại K có
BK chung
KA=KM
=>ΔBKA=ΔBKM
=>góc ABK=góc MBK
Xét ΔBAC và ΔBMC có
BA=BM
góc ABC=góc MBC
BC chung
=>ΔBAC=ΔBMC
=>góc BMC=90 độ
b: Xét tứ giác ACMD có
K là trung điểm chung của AM và CD
=>ACMD là hình bình hành
=>MD//AC
=>MD vuông góc AB