K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

A B H M O D I K

a/

Ta có \(\widehat{AMB}=90^o\) (góc nt chắn nửa đường tròn)

Xét tg vuông AMB có

\(MH^2=AH.BH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền = tích giữa các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow BH=\dfrac{MH^2}{AH}=\dfrac{4^2}{2}=8cm\)

\(\Rightarrow AB=AH+BH=2+8=10cm\)

\(MA^2=AH.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow MA=\sqrt{AH.AB}=\sqrt{2.10}=2\sqrt{5}cm\)

\(MB^2=BH.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow MB=\sqrt{BH.AB}=\sqrt{8.10}=4\sqrt{5}cm\)

b/ Không rõ bạn hỏi biểu thức nào?

c/

Ta có \(OD\perp AM\) (2 tiếp tuyến cùng xuất phát từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn vuông góc với dây cung nối 2 tiếp điểm)

Xét tg vuông AIO 

Gọi K là trung điểm của AO => AK=OK

\(\Rightarrow IK=AK=OK=\dfrac{1}{2}AO\) không đổi (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Ta có

A; O cố định => K cố định; IK không đổi => khi M di chuyển trên nửa (O) => I chạy trên nửa đường tròn tâm K

 

 

 

 

16 tháng 8 2021

a) MA=AH2+MH2−−−−−−−−−−−√=25–√MA=AH2+MH2=25
M∈(O)M∈(O) đk AB⇒AMBˆ=90∘⇒AMBAB⇒AMB^=90∘⇒AMB vuông tại M,MH⊥AB⇒AM2=AH.AB⇒AB=10M,MH⊥AB⇒AM2=AH.AB⇒AB=10
⇒MB=AB2−AM2−−−−−−−−−−√=45–√⇒MB=AB2−AM2=45
b) 1MA2+1MB2=1MH21MA2+1MB2=1MH2 (theo HTL trong △△ vuông)
⇒1MA2+1MB2⇒1MA2+1MB2 nhỏ nhất ⇔1MH2⇔1MH2 nhỏ nhất ⇔MH⇔MH lớn nhất
Mà MH≤OMMH≤OM. Dấu '=' xảy ra khi MH=OM⇔H≡O⇔MMH=OM⇔H≡O⇔M là điểm chính giữa của nửa (O)

11 tháng 12 2021

a: \(AM=2\sqrt{5}\left(cm\right)\)

\(HB=8cm\)

\(AB=10cm\)

11 tháng 12 2021
26 tháng 4 2018

a, Ta có:  E C A ^ + O C A ^ = 90 0 và A C H ^ + O A C ^ = 90 0

mà  O A C ^ = O C A ^  (do tam giác AOC cân tại O)

Suy ra E C A ^ = A C H ^

Khi đó  E A C ^ = H A C ^  (cùng lần lượt phụ với E C A ^ và  A C H ^ ), ta có đpcm

b, Chứng minh tương tự  suy ra BC là phân giác của  F B H ^

Từ đó, chứng minh được BC vuông góc HF (1)

Tam giác ABC có trung tuyến OC = 1 2 AB. Suy ra tam giác ABC vuông tại C , tức là BC vuông góc với AC (2)

Từ (1),(2) suy ra đpcm

c, Ta có : AE+BF =2OC=2R không đổi

d, Ta có   A E . B F ≤ A E + B F 2 4 = R 2

suy ra AE.BF lớn nhất =  R 2 óAE=BF=R

Điều này xẩy ra khi C là điểm chính giữa cung AB

NM
16 tháng 8 2021

undefined

a. áp dụng hệ thức lượng ta có:

\(MH^2=AH.BH\Rightarrow BH=\frac{4^2}{2}=8cm\)

\(\Rightarrow\hept{\begin{cases}AB=AH+HB=2+8=10cm\\MA=\sqrt{AH.AB}=\sqrt{20}cm\end{cases}}\)

b. ta có :

\(\frac{1}{MA^2}+\frac{1}{MB^2}\ge\frac{4}{MA^2+MB^2}=\frac{4}{AB^2}=const\)

dấu bằng xảy ra khi \(MA=MB\Rightarrow M\text{ nằm chính giữa cung tròn AB}\)

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

=>ΔAMB vuông tại M

Xét (O) có

ΔANB nội tiếp

AB là đường kính

=>ΔANB vuông tại N

Xét ΔCAB có

AN.BM là đường cao

AN cắt BM tại H

=>H là trực tâm

=>CH vuông góc AB

b:

Gọi giao của CH vơi AB là K

=>CH vuông góc AB tại K

góc OMI=góc OMH+góc IMH

=góc OBM+góc IHM

=góc OBM+góc BHK=90 độ

=>IM là tiếp tuyến của (O)