K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2019

+ Nếu \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\)

\(\Rightarrow2x-5=3x+2\Leftrightarrow x=-7< \frac{5}{2}\) (Loại)

+ Nếu \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\)

\(\Rightarrow-2x+5=3x+2\Leftrightarrow x=\frac{3}{5}< \frac{5}{2}\)

3 tháng 12 2019

Trả lời :

|2x - 5| = 3x + 2

Do |2x - 5| > 0

=> 3x + 2 > 0

=> 2x - 5 = 3x + 2

=> 5 - 2 = 3x - 2x

=> x = 3

Vậy x = 3.

~Std well~

#Tiểu Hàm

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Bài 1.

a. $=a^2+2.a.12+12^2=a^2+24a+144$

b. $=(3a)^2+2.3a.\frac{1}{3}+(\frac{1}{3})^2=9a^2+2a+\frac{1}{9}$

c. $=(5a^2)^2+2.5a^2.6+6^2=25a^4+60a^2+36$

d. $=\frac{1}{4}+2.\frac{1}{2}.4b+(4b)^2$

$=\frac{1}{4}+4b+16b^2$

e.

$=(a^m)^2+2.a^m.b^n+(b^n)^2$

$=a^{2m}+2a^mb^n+b^{2n}$

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Bài 2.

$(x-0,3)^2=x^2-0,6x+0,09$

$(6x-3y)^2=36x^2-36xy+9y^2$

$(5-2xy)^2=25-20xy+4x^2y^2$
$(x^4-1)^2=x^8-2x^4+1$

$(x^5-y^3)^2=x^{10}-2x^5y^3+y^6$

24 tháng 9 2021

\(\dfrac{x}{6}=\dfrac{7}{4}\Rightarrow x=\dfrac{6\cdot7}{4}=\dfrac{21}{2}\\ \dfrac{3}{x}=\dfrac{21}{17}\Rightarrow x=\dfrac{3\cdot17}{21}=\dfrac{17}{7}\)

24 tháng 4 2019

Huhuhu😭😭😭😭😭😭😭

19 tháng 7 2019

???

5:

a: sin x=2*cosx

\(A=\dfrac{6cosx+2cosx-4\cdot8\cdot cos^3x}{cos^3x-2cosx}\)

\(=\dfrac{8-32cos^2x}{cos^2x-2}\)

b: VT=sin^4(pi/2-x)+cos^4(x+pi/2)+6*1/2*sin^22x+1/2*cos4x

=cos^4x+sin^4x+3*sin^2(2x)+1/2*(1-2*sin^2(2x))

=1-2*sin^2x*cos^2x+3*sin^2(2x)+1/2-sin^2(2x)

==3/2=VP

NV
10 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+z=2\\4y-4z=-6\\-y+z=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+z=2\\y-z=-\dfrac{3}{2}\\-y+z=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+z=2\\y-z=-\dfrac{3}{2}\\0=-\dfrac{29}{2}\end{matrix}\right.\)

Hệ đã cho vô nghiệm

10 tháng 12 2021

có thể chỉ rõ cho chút ko ạk

1 tháng 12 2021

Câu 5:

Áp dụng định lí cos: \(bc\cdot\cos A=bc\cdot\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{b^2+c^2-a^2}{2}\)

Tương tự \(\Leftrightarrow ac\cdot\cos B=\dfrac{c^2+a^2-b^2}{2};ab\cdot\cos C=\dfrac{a^2+b^2-c^2}{2}\)

\(\Leftrightarrow P=\dfrac{a^2+b^2-c^2+b^2+c^2-a^2+c^2+a^2-b^2}{2}=\dfrac{a^2+b^2+c^2}{2}=\dfrac{4032}{2}=2016\)

1 tháng 12 2021

làm nhanh vậy, mik ms đang thay P và rút gọn 

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Bài 13:

$6-2\sqrt{5}=5-2\sqrt{5}.\sqrt{1}+1$

$=(\sqrt{5}-1)^2$

Tương tự: $6+2\sqrt{5}=(\sqrt{5}+1)^2$
Do đó:
$M=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}$

$=|\sqrt{5}+1|-|\sqrt{5}-1|=(\sqrt{5}+1)-(\sqrt{5}-1)$

$=2$

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Bài 14:

a.

$M=\sqrt{4+2\sqrt{4}.\sqrt{5}+5}-\sqrt{4-2\sqrt{4}.\sqrt{5}+5}$

$=\sqrt{(\sqrt{4}+\sqrt{5})^2}-\sqrt{(\sqrt{4}-\sqrt{5})^2}$

$=|\sqrt{4}+\sqrt{5}|-|\sqrt{4}-\sqrt{5}|$

$=2+\sqrt{5}-(\sqrt{5}-2)=4$

b.

$N=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}$

$=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}$

$=|\sqrt{7}-1|-|\sqrt{7}+1|$

$=(\sqrt{7}-1)-(\sqrt{7}+1)=-2$