Tìm cặp nghiệm (x;y) thỏa mãn x<0 của hệ phương trình:
\(\hept{\begin{cases}2x^2-y^3+2xy+2xy^2=3\\x^2-y^3+xy=1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chia thành 2 trường hợp :
a)y2+y=x4+x3+x2+x=0 (1)
...(1)<=>y(y+1)=x(x3+x2+x+1)=0
...Pt này có 4 nghiệm sau
...x1=0; y1=0
...x2=0; y2= -1
...x3= -1; y3=0
...x4= -1; y4= -1
b)y2+y=x4+x3+x2+x (# 0) (2)
...ĐK để 2 vế khác 0 là x và y đều phải khác 0 và -1.Với ĐK đó thì
...(2)<=>y(y+1)=(x2)(x2+x+1+1x1x)
...Đến đây lại chia 2 th :
...+{y=x2
.....{x+1+1x1x=1 (3)
.....(3) vô nghiệm =>th này vô nghiệm
...+{y+1=x2
.....{x+1+1x1x= -1
....=>x= -1; y=0 (theo ĐK ở trên nghiệm này phải loại)
...Vậy khi y2+y=x4+x3+x2+x # 0 thì pt vô nghiệm
Tóm lại pt đã cho có 4 nghiệm
x1=0; y1=0
x2=0; y2= -1
x3= -1; y3=0
x4= -1; y4= -1
P/s:Mik ko chắc
Do \(x=2\) là nghiệm của phương trình nên:
\(\left\{{}\begin{matrix}2a+y=3\\2+ay=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=3-2a\\ay=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ay=3a-2a^2\\ay=-3\end{matrix}\right.\)
\(\Rightarrow3a-2a^2=-3\)
\(\Rightarrow2a^2-3a-3=0\Rightarrow a=\dfrac{3\pm\sqrt{33}}{4}\)
Bạn chú ý x;y là số nguyên dương, như thế hiển nhiên ta sẽ có x+y>x−(y+6) nhưng mà theo điều giả sử x≥y+6 nên x−(y+6)≥0 với mọi x,y
Lai do x,y nguyên dương nên x+y≥1 Như vậy hiển nhiên là (x+y)^3>(x−y−6)^2 nên pt vô nghiệm
https://diendantoanhoc.net/topic/113122-gi%E1%BA%A3i-ph%C6%B0%C6%A1ng-tr%C3%ACnh-nghi%E1%BB%87m-nguy%C3%AAn-d%C6%B0%C6%A1ng-xy3x-y-62/