Tìm giá trị m để hàm số sau là hàm số bậc nhất
\(y=\left(m^2-5m+6\right)x^2+\left(m-1\right)x+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: m^2-m+1
=m^2-m+1/4+3/4
=(m-1/2)^2+3/4>=3/4>0 với mọi m
=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R
a, Để hàm số là hàm bậc nhất thì \(\left(-m^2+m-2\right)\ne0\)
\(\Rightarrow-\left(m-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\ne0\) (luôn đúng vì \(-\left(m-\dfrac{1}{2}\right)^2\le0\forall m\))
Vậy hàm số luôn là hàm bậc nhất.
b,Để hàm số là hàm bậc nhất thì \(\left\{{}\begin{matrix}2m^2-6m=0\\2m+3\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=0\\m=3\\m\ne-\dfrac{3}{2}\end{matrix}\right.\left(tm\right)\)
Vậy hàm số là hàm bậc nhất khi m ∈ {0;3}.
\(\Leftrightarrow\sqrt{2t^2+mt-m-1}=t-1\) có 2 nghiệm thỏa mãn \(1\le t< 3\)
\(\Rightarrow2t^2+mt-m-1=t^2-2t+1\)
\(\Leftrightarrow f\left(t\right)=t^2+\left(m+2\right)t-m-2=0\) có 2 nghiệm \(1< t_1< t_2< 3\) (hiển nhiên \(t=1\) ko là nghiệm)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+2\right)^2+4\left(m+2\right)>0\\f\left(1\right)=1>0\\f\left(3\right)=9+3\left(m+2\right)-m-2>0\\1< \dfrac{t_1+t_2}{2}=\dfrac{-m-2}{2}< 3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)\left(m+6\right)>0\\2m+13>0\\2< -m-2< 6\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-2\\m< -6\end{matrix}\right.\\m>-\dfrac{13}{2}\\-8< m< -4\end{matrix}\right.\) \(\Rightarrow-\dfrac{13}{2}< m< -6\)
a: y=m^2x-4mx+8m+4x+3
=x(m^2-4m+4)+8m+3
Để đây là hàm số bậc nhất thì m^2-4m+4<>0
=>(m-2)^2<>0
=>m-2<>0
=>m<>2
b: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}2018-2m>=0\\\sqrt{2018-2m}< >0\end{matrix}\right.\Leftrightarrow2018-2m>0\)
=>2m<2018
=>m<1009
Để hàm trên là hàm bậc nhất thì cần điêu kiện sau :
\(\hept{\begin{cases}m^2-5m+6=0\\m-1\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m-2\right)\left(m-3\right)=0\\m\ne1\end{cases}}\)
Do đó : \(m=2\) hoặc \(m=3\)
Chúc bạn học tốt !!!