Chứng minh rằng : Có vô số số nguyên x để biểu thức sau là số chình phương :
\(\left(1+2+3+...+x\right)\left(1^2+2^2+3^2+...+x^2\right)\) .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{\left(x+4\right)\times x-2}{x+4}\)
\(B=x-\dfrac{2}{x+4}\)
Vì \(x\in z\), để \(B\in z\Leftrightarrow\dfrac{2}{x+4}\in z\)
\(\Leftrightarrow2⋮\left(x+4\right)\)
\(\Leftrightarrow x+4\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left(\pm1;\pm2\right)\)
Ta có bảng sau
\(\begin{matrix}x+4&1&-1&2&-2\\x&-3&-5&-2&-6\end{matrix}\)
Vậy \(x\in\left(-2;-3;-5;-6\right)\) thì \(B\in z\)
Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)
\(\Rightarrow P=abc\)
Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z
1.
a.Để A là phân số thì n - 5 khác 0 => n khác 5
b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}
Ta có bảng sau:
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.
- Với \(m=0\Rightarrow x=-2\) thỏa mãn
- Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)
Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương
Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ
\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)
\(\Rightarrow m=2k\left(k+1\right)\)
Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ
với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)
\(H=\frac{x\left(x+1\right)}{2}.\frac{x\left(x+1\right)\left(2x+1\right)}{6}=x^2\left(x+1\right)^2.\frac{2x+1}{12}\)
tồn tại vô số nguyên dương x để \(\frac{2x+1}{12}\) là số chính phương => ...