K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\Rightarrow xy+yz+zx=1\)

Ta có:

\(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}=\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\ge1\)

 để ý \(x^2+y^2+z^2\ge xy+yz+zx\) nha mọi người:)

2 tháng 1 2018

post ít một thôi

NV
1 tháng 3 2022

Với các số dương x;y ta có:

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

Áp dụng:

\(\Rightarrow P=\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{a}{ca\left(c+a\right)+abc}\)

\(\Rightarrow P\le\dfrac{abc}{ab\left(a+b+c\right)}+\dfrac{abc}{bc\left(a+b+c\right)}+\dfrac{abc}{ca\left(a+b+c\right)}\)

\(\Rightarrow P\le\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(P_{max}=1\) khi \(a=b=c=1\)