K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

a) 3;6

b)28;26

c)-1 ; 1 ( số âm thật nha , ko tin áp dụng công thức : số cuối -( số số hạng - 1 ) . khoảng cách giữa 2 số . ko thì mò tay cũng ra )

4 tháng 12 2021

a) Gọi số hạng thứ 100 của dãy là n, n là số tự nhiên

Ta có  : 3 = 3 

8 = 3 + 5

15 = 3 + 5 + 7

24 = 3 + 5 + 7 + 9

35 = 3 + 5 + 7 + 11

n = 3 + 5 + 7 + 11 + ..... + n1

n1 = (100-1) x 2 + 3 = 201

⇒ n = (201+3) x 100 : 2 = 10200

Số hạng thứ 100 của dãy là 10200

4 tháng 12 2021

Tham Khảo ^^

undefined

5 tháng 8 2020

Số hạng thứ 3 là: (64 + 36) : 2 = 50

Số hạng thứ 4 là: (64 + 36 + 50) : 3 = 50

Vì là trung bình cộng nên các số sau khi cộng vào rồi chia vẫn sẽ được số hạng thứ 3 (50)

=> Tổng của 2020 số hạng đầu tiên là: 

             64 + 36 + 50 . 2018 = 101000

                                                 Đáp số: 101000

#Shinobu Cừu

5 tháng 8 2020

Tổng 2 số hạng đầu là: 64 + 56 = 100 = 2 x 50

Số hạng thứ 3 là: 2 x 50 : 2 = 50 

Số hạng thứ 4 là: ( 2 x 50 + 50 ) : 3 = ( 3 x 50 ) : 3 = 50

Số hạng thứ 5 là: ( 4 x 50 ) : 4 = 50 

Số hạng thứ 6 là: ( 5 x 50) : 5 = 50

.....

Số hạng thứ 2020 là:  ( 2019 x 50 ) : 2019 = 50 

Tổng của 2020 số hạng đầu tiên là: 2020 x 50 = 101 000

Đáp số:...

13 tháng 12 2015

Dãy số có quy luật sau: số đầu cộng 2 được số sau và số sau cứ cộng hai nữa là được số tiếp theo (tính từ phải qua trái)

=> hai số tiếp theo là: 4 + 2 = 6; 6 + 2 = 8

=> hai số đó là: 8 và 6

26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

4 tháng 8 2018

a , ....., 4 ,  2 , 0  ( mỗi số tăng thêm 2 đv 

0,2,4,6,8,10,12,14, 16 , 18 

Vậy số đầu tiên của dãy số là số : 18 
b , là giảm mỗi số đi 2 đv bắt đầu từ 29 

29,27,25,23,21,19,17,15,11,9 

Vậy số đầu tiên của dãy số là : 9 

hok tốt


 

4 tháng 8 2018

cảm ơn bạn.

17 tháng 1 2017

33;36

8;6

k nhé

17 tháng 1 2017

   a, Gọi số hạng đầu thứ nhất là x

Khoảng cách giữa hai số hạng liền nhau là: 45-42=3; 42-39=3

Dựa vào công thức tính số số hạng, ta có:

 (45-x):3+1=15 ( bạn tự tính nha, kết quả là 3)

Vậy số hạng đầu thứ hai là: 3+3=6 ( lấy kết quả trên cộng với khoảng cách) 

Ta có dãy số sau: 3; 6; ...; 39; 42; 45

b,  Gọi số hạng đầu thứ nhất là x

Khoảng cách giữa hai số hạng liền nhau là: 4-2=2; 2-0=2.

Dựa vào công thức tính số số hạng ta có:

(x-0):2+1=15 ( tự tính kết quả là 28)

Vậy số hạng đầu thứ hai là: 28-2=26

ta có dãy số: 28, 26,..., 4, 2, 0 

XONG RỒI ĐÓ, K CHO TỚ NHÉ

17 tháng 9 2023

a) (394 - 4) : 6 +1=66 (số hạng)

b) (158-11): 3+1=50(số hạng)

c)(298-1):3 +1 =100(số hạng)

nhớ click cho mik nha :V