Tìm GTNN của
B = \(\sqrt{5x^2+5x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\).Ta có:
\(B\ge\sqrt{5x-4+12-5x}=\sqrt{-\left(4-12\right)}=\sqrt{8}=\sqrt{4}.\sqrt{2}=2\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{5x-4}\ge0\\\sqrt{12-5x}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}5x\ge4\\5x\le12\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{4}{5}\\x\le\frac{12}{5}\end{cases}\Leftrightarrow\frac{4}{5}\le x\le\frac{12}{5}}\)
Bạn xem lại ĐKĐB. Nếu $x\geq \frac{-1}{3}$ thì mình nghi ngờ $\sqrt{3x-1}$ của bạn viết là $\sqrt{3x+1}$Còn nếu đúng là $\sqrt{3x-1}$ thì ĐK cần là $x\geq \frac{1}{3}$.
\(B=\sqrt{5\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}\)
\(B_{min}=\frac{\sqrt{3}}{2}\) khi \(x=\frac{1}{2}\)