K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOCD cân tại O có OK là đường trung tuyến

nên OK vuông góc CD

góc OKM=góc OAM=góc OBM=90 độ

=>O,K,M,A,B cùng thuộc đường tròn đường kính OM

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA=1/2sđ cung AC

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA

=>MA^2=MD*MC

=>MD*MC ko phụ thuộc vào cát tuyến MCD

 

11 tháng 5 2023

Để chứng minh HM.KN=HN.KM, ta sẽ sử dụng định lí Ptolemy cho tứ giác HMIN và KMNO.

Ta có:

Tứ giác HMIN là tứ giác nội tiếp do hai tiếp tuyến IM và IN của đường tròn (O).
Tứ giác KMNO là tứ giác điều hòa do K là điểm đối xứng của M qua O.
Áp dụng định lí Ptolemy cho tứ giác HMIN, ta được:
HM.IN + HN.IM = HI.MN

Áp dụng định lí Ptolemy cho tứ giác KMNO, ta được:
KM.NO + KO.MN = KN.MO

Vì K là điểm đối xứng của M qua O nên KO=OM. Thay vào biểu thức trên, ta được:
KM.NO + OM.MN = KN.MO
KM.NO + MN² = KN.MO

Nhân cả hai vế của phương trình trên với IM.IN, ta được:
KM.NO.IM.IN + MN².IM.IN = KN.MO.IM.IN
HM.KN + MN².IM.IN = HN.KM.IM.IN

Từ đó suy ra:
HM.KN = HN.KM + MN²/IM.IN

Nhưng IM và IN lần lượt là đường cao của tam giác HIM và tam giác HIN nên:
IM.IN = HM.HN

Thay vào biểu thức trên, ta được:
HM.KN = HN.KM + MN²/HM.HN

Ta thấy rằng tam giác HIM và tam giác HIN đồng dạng nên:
HM/HN = IM/IN

Thay vào biểu thức trên, ta được:
HM.KN = HN.KM + MN².IM²/IN²

Vì tam giác HIM và tam giác HIN đồng dạng nên:
IM/IN = HM/HN

Thay vào biểu thức trên, ta được:
HM.KN = HN.KM + MN².HM²/HN²

Điều này chứng tỏ HM.KN=HN.KM nên ta đã chứng minh được điều phải chứng minh.

11 tháng 5 2023

mi2nh mới học lớp 9

 

a: góc OAK+góc OBK=90+90=180 độ

=>OAKB nội tiếp

Xét ΔKAC và ΔKDA có

góc KAC=góc KDA

góc AKC chung

=>ΔKAC đồng dạng với ΔKDA

=>KA^2=KC*KD

b: Xét (O) có

KA,KB là tiếp tuyến

=>KA=KB

=>OK là trung trực của AB

=>KM*KO=KA^2=KC*KD

=>KM/KD=KC/KO

=>ΔKMC đồng dạng với ΔKDO

=>góc KMC=góc KDO

a: góc OAK+góc OBK=180 độ

=>OAKB nội tiếp

Xét ΔKAC và ΔKDA có

góc KAC=góc KDA

góc AKC chung

=>ΔKAC đồng dạng với ΔKDA
=>KA/KD=KC/KA

=>KA^2=KD*KC

b: Xét (O) có

KA,KB là tiếp tuyến

=>KA=KB

mà OA=OB

nên OK là trung trực của AB

=>OK vuông góc AB tại M

Xét ΔOAK vuông tại A có AM vuông góc OK

nên KM*KO=KA^2=KC*KD

=>KM/KD=KC/KO

=>ΔKMC đồng dạng với ΔKDO

=>góc KMC=góc KDO

góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

góc ABD=góc AKB

góc A chung

=>ΔABD đồng dạng với ΔAKB

=>AB/AK=AD/AB

=>AB^2=AK*AD

AB,AC là tiếp tuyến

=>AB=AC
=>OA là trung trực của BC

=>OB^2=OH*OA; AB^2=AH*AO

OH*OA+AD*AK=OB^2+AB^2=OA^2

AD*AK=AH*AO=AB^2

=>ΔAHD đồng dạng với ΔAKO

=>góc AHD=góc AKO=góc OKD=góc ODK(ΔODK cân tại O)

=>góc OAD=góc HDO+góc ODA

Gọi DM vuông góc OB và cắt BK tại E

ME//AB

=>ME/BP=KM/KP=KE/KB

DE//AB

=>KE/KB=KP/KA

=>KE/AB=KM/KP=KD/KA

=>KE/KB=KD/KA

Xet ΔAPK có

DM//AP

KM/KP=KD/KA

=>K,M,P thẳng hàng

1: Xét tứ giác KAOB có \(\widehat{KAO}+\widehat{KBO}=90^0+90^0=180^0\)

nên KAOB là tứ giác nội tiếp

2: Xét (O) có

\(\widehat{KAC}\) là góc tạo bởi tiếp tuyến AK và dây cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{KAC}=\widehat{ADC}\)

Xét ΔKAC và ΔKDA có

\(\widehat{KAC}=\widehat{KDA}\)

\(\widehat{AKC}\) chung

Do đó: ΔKAC đồng dạng với ΔKDA

=>\(\dfrac{KA}{KD}=\dfrac{KC}{KA}\)

=>\(KA^2=KC\cdot KD\)

Xét (O) có

KA,KB là các tiếp tuyến

Do đó: KA=KB

=>K nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OK là đường trung trực của AB

=>OK\(\perp\)AB tại M và M là trung điểm của AB

Xét ΔOAK vuông tại A có AM là đường cao

nên \(KM\cdot KO=KA^2\)

=>\(KA^2=KM\cdot KO=KC\cdot KD\)