Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc KAN=1/2*180=90 độ
ΔOBC cân tại O
mà OH là trung tuyến
nên OH vuông góc BC
góc KAD+góc KHD=180 độ
=>KADH nội tiếp
b: Xét ΔNCB có
NH vừa là đường cao, vừa là trung tuyến
=>ΔNCB cân tại N
=>góc NBC=góc NCB=góc NAB
=>góc NAB=góc NBD
mà góc ABN chung
nên ΔNAB đồng dạng với ΔNBD
=>NB^2=NA*ND
a: Xét tứ giác KBOD có
\(\widehat{OBK}+\widehat{ODK}=180^0\)
=>KBOD là tứ giác nội tiếp
b: Xét (O) có
KB,KD là tiếp tuyến
=>KB=KD
mà OB=OD
nên OK là trung trực của BD
=>OK cắt BD tại trung điểm của BD
=>O,I,K thẳng hàng và OK\(\perp\)BD tại I
Xét ΔKBA và ΔKCB có
\(\widehat{KBA}=\widehat{KCB}\)
\(\widehat{BKA}\) chung
Do đó: ΔKBA đồng dạng với ΔKCB
=>KB/KC=KA/KB
=>\(KB^2=KA\cdot KC\)(1)
Xét ΔKBO vuông tại B có BI là đường cao
nên \(KI\cdot KO=KB^2\left(2\right)\)
Từ (1) và (2) suy ra \(KA\cdot KC=KI\cdot KO\)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)