Tồn tai hay không tồn tại các số nguyên tố a,b,c thỏa mãn các điều kiện sau: \(a^b+2011=c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Nếu a là số nguyên tố lẻ -> ab là số lẻ
=> ab+ 2011 là số chẵn lớn hơn 2011
-> c là số chẵn lớn hơn 2011
mà c là số chẵn nguyên tố => c không tồn tại
Đ nếu a là số nguyên tố chẵn => a
Khi đó ab+ 2011 (*)
Ta lại có b là nguyên tố => b= 2 hoặc b là số nguyên tố lẻ
. b=2 khi đó 2b+ 2011=22+ 2011
= 2015 là hợp số
-> b=2 là KTM
. b là số nguyên tố lẻ => b=4k + 1; b=4k+ 3 ( K thuộc N*)
Với b=4k+1
Ta có 2b+ 2011= 24k+1+2011
=16k. 2+ 2011
Ta thấy: 16=1(mod3)
=>16k=1(mod3)
=>2.16k=2(mod3)
mà 2011=1(mod3)
=>2:16k+2011=3(mod3)
Tức là 2.16k+2011:3
=>2.16k+2011 là hợp số
Vậy b=4k+1(k thuộc N*) không TM
Với b=4k+3. Thay vào (*)
Ta có: 24k+3+2011
= 24k.23+2011
= 16k=1 (mod3)
mà 8.16k=2 (mod3)
=> 8.16k=2(mod3)
Mà 2011=1(mod3)
=>16k.8+2011 là hợp số
Ta có:
a.b.c.d-a =a.[b.c.d-1]=2005
a.b.c.d-b =b.[a.c.d-1]=2009
a.b.c.d-c =c.[b.a.d-1]=2011
a.b.c.d-d =d.[b.c.a-1]=2015
Ta có: a + abc = -357 <=> a.(bc + 1) = -357
b + abc = -573 <=> b.(ac + 1) = -573
c + abc = -753 <=> c.(ab + 1) = -753
=> a,b,c lẻ => abc lẻ => a + abc chẵn
mà -357 là số lẻ => không tồn tại a,b,c
Bấn vào dòng chữ màu xanh này, có bài này mình làm rồi Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Giả sử có tồn tại các số nguyên a,b,c thỏa mãn điều kiện của đề bài .Khi đó ta có :
a(bc+1)=-625
b(ac+1)=-633
c(ab+1)=-597
Nói riêng a,b,c là các số lẻ.Vậy tích abc cũng phải là một số lẻ và do đó -625=abc+a là một số chẵn (vô lí).Vậy không tồn tại các số nguyên a,b,c thỏa mãn đề bài.
Giả sử tồn tại các số nguyên a; b; c thỏa mãn:
a.b.c + a = -625 ; a.b.c + b = -633 và a.b.c + c = -597
Xét từng điều kiện ta có:
a.b.c + a = a.(b.c + 1) = -625
a.b.c + b = b.(a.c + 1) = -633
a.b.c + c = c.(a.b + 1) = -597
Chỉ có hai số lẻ mới có tích là một số lẻ \(\Rightarrow\) a; b; c đều là số lẻ \(\Rightarrow\) a.b.c cũng là số lẻ.
Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)
Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.