K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

+ Nếu a là số nguyên tố lẻ -> ab là số lẻ

=> ab+ 2011 là số chẵn lớn hơn 2011

-> c là số chẵn lớn hơn 2011

mà c là số chẵn nguyên tố => c không tồn tại

Đ nếu a là số nguyên tố chẵn => a

Khi đó ab+ 2011 (*)

Ta lại có b là nguyên tố => b= 2 hoặc b là số nguyên tố lẻ

b=2 khi đó 2b+ 2011=22+ 2011

                                  = 2015 là hợp số

-> b=2 là KTM

. b là số nguyên tố lẻ => b=4k + 1; b=4k+ 3 ( K thuộc N*)

Với b=4k+1 

Ta có 2b+ 2011= 24k+1+2011

=16k2+ 2011

Ta thấy: 16=1(mod3)

=>16k=1(mod3)

=>2.16k=2(mod3)

mà 2011=1(mod3)

=>2:16k+2011=3(mod3)

Tức là 2.16k+2011:3

=>2.16k+2011 là hợp số

Vậy b=4k+1(k thuộc N*) không TM

Với b=4k+3. Thay vào (*)

Ta có: 24k+3+2011

         = 24k.23+2011

         = 16k=1 (mod3)

mà 8.16k=2 (mod3)

=> 8.16k=2(mod3)

Mà 2011=1(mod3)

=>16k.8+2011 là hợp số

13 tháng 1 2018

lên mạng tra ý

31 tháng 12 2016

Ta có:  

a.b.c.d-a =a.[b.c.d-1]=2005

a.b.c.d-b =b.[a.c.d-1]=2009

a.b.c.d-c =c.[b.a.d-1]=2011

a.b.c.d-d =d.[b.c.a-1]=2015

2 tháng 1 2016

Sao các tich bằng nhau vậy, vô lý!

19 tháng 2 2017

Ta có: a + abc = -357 <=> a.(bc + 1) = -357

          b + abc = -573 <=> b.(ac + 1) = -573

          c + abc = -753 <=> c.(ab + 1) = -753

=> a,b,c lẻ => abc lẻ => a + abc chẵn

mà -357 là số lẻ => không tồn tại a,b,c

23 tháng 7 2015

Bấn vào dòng chữ màu xanh này, có bài này mình làm rồi Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

31 tháng 12 2016

có 100% luôn

11 tháng 5 2018

không

13 tháng 5 2018

Giả sử có tồn tại các số nguyên a,b,c thỏa mãn điều kiện của đề bài .Khi đó ta có :

                        a(bc+1)=-625

                        b(ac+1)=-633

                        c(ab+1)=-597

Nói riêng a,b,c là các số lẻ.Vậy tích abc cũng phải là một số lẻ và do đó -625=abc+a là một số chẵn (vô lí).Vậy không tồn tại các số nguyên a,b,c thỏa mãn đề bài.

17 tháng 5 2015

Giả sử tồn tại các số nguyên a; b; c thỏa mãn:

a.b.c + a = -625   ;     a.b.c + b = -633           và        a.b.c + c = -597

Xét từng điều kiện ta có:

a.b.c + a = a.(b.c + 1) = -625

a.b.c + b = b.(a.c + 1) = -633

a.b.c + c = c.(a.b + 1) = -597

Chỉ có hai số lẻ mới có tích là một số lẻ \(\Rightarrow\) a; b; c đều là số lẻ \(\Rightarrow\) a.b.c cũng là số lẻ.

Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)

    Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.

17 tháng 5 2015

Ta có:

abc + a = -625 (1)

abc + b = -633 (2) 

abc + c = -597 93)

Từ (1), (2) và (3) => a,b và c lẻ => abc lẻ => abc + a chẵn (vì lẻ + lẻ = chẵn) mâu thuẫn với -625 là số lẻ

Vậy không tồn tại số nguyên a, b, c thỏa mãn