K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

23 tháng 11 2024

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x

∈ N)

 

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 

 =( x2 + 3x ) (x2 + 2x + x +2 ) +1 

 

= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)

 

Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2

 

=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương 

 

hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương 

7 tháng 10 2018

Khoảng cách giữa 2 số lẻ liên tiếp là 2

Số lẻ đầu tiên là 1 thì số lẻ thứ n là:

             \(1+\left(n-1\right).2=2n-1\)

Khi đó: tổng n STN lẻ liên tiếp kể từ 1 là:

      \(1+3+5+...+\left(2n-1\right)\)

\(=\left(1+2n-1\right).n:2\)

\(=2n^2:2=n^2\)

Vậy tổng của n STN lẻ liên tiếp là số chính phương.

Chúc em học tốt.

28 tháng 3 2016

gọi 5 số tự nhiên đó lần lượt là n-2;n-1;n;n+1;n+2

Ta có:

(*) (n-2)2=n(n-2)-2(n-2)=n2-4n+4 (1)

(*)(n-1)2=n(n-1)-1(n-1)=n2-2n+1  (2)

(*)n2=n2                                    (3)

(*)(n+1)2=n(n+1)+1(n+1)=n2+2n+1(4)

(*)(n+2)2=n(n+2)+2(n+2)=n2+4n+4  (5)

Cộng liên tiếp (1);(2);(3);(4);(5)

pt<=>n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4

=(n2+n2+n2+n2+n2)+(-4n-2n+2n+4n)+(4+1+1+4)

=5n2+10=5(n2+2) chia hết cho 5 nhưng ko chia hết cho 25

=>n2+n ko chia hết cho 5

=>đpcm

28 tháng 3 2016

ta có: n^2 + (n-1)^2 +(n+1)^2 +(n-2)^2 +(n+2)^2 
= n^2 + n^2 - 2n +1+ n^2 +2n+1 +n^2 - 4n+4+ n^2 +4n+4 
= 5n^2 +10 không phải số chính phương 

21 tháng 12 2015

Gọi 4 số tự nhiên liên tiếp đó là a-1;a;a+1;a+2

Theo đề ra ta có

\(a\left(a-1\right)\left(a+1\right)\left(a+2\right)+1=\left[a\left(a+1\right)\right]\left[\left(a-1\right)\left(a+2\right)\right]+1\)

\(=\left(a^2+a\right)\left(a^2+a-2\right)+1\)

Đặt \(a^2+a-1=x\)

=>\(\left(x-1\right)\left(x+1\right)+1=x^2-1+1=x^2\)là số chính phương 

Vậy ...

 

25 tháng 12 2015

a+(a+1(+(a+2(+(a+3) +1 = 4a+7 

với a =5 => 4.5 + 7 =27 không là số chính phương

=> đề sai

13 tháng 3 2016

đơn giản thế này thôi:

Tổng bình phương của 5 STN liên tiếp chia 5 dư 4 không là SCP.