tìm x biết
\(\sqrt{9-x}+\sqrt{x-5}=-x^2+10x-23\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\hept{\begin{cases}\sqrt{x^2-8x+16}+\sqrt{x^2-12x+36}=|x-4|+|6-x|\ge|x-4+6-x|=2\\-x^2+10x-23=-\left(x^2-10x+23\right)=-\left(x^2-10x+25-2\right)=-\left(x-5\right)^2+2\le2\end{cases}}\)
Dấu " = " xảy ra khi: x = 5.
Vậy x = 5.
1, \(\sqrt{4-4x+x^2}=3\)
\(\Leftrightarrow\sqrt{\left(2+x\right)^2}=3\)
\(\Leftrightarrow\left|2+x\right|=3\)
TH1: \(\left|2-x\right|=2-x\) với \(2-x\ge0\Leftrightarrow x\le2\)
Pt trở thành:
\(2-x=3\) (ĐK: \(x\le2\) )
\(\Leftrightarrow x=2-3\)
\(\Leftrightarrow x=-1\left(tm\right)\)
TH2: \(\left|2-x\right|=-\left(2-x\right)\) với \(2-x< 0\Leftrightarrow x>2\)
Pt trở thành:
\(-\left(2-x\right)=3\) (ĐK: \(x>2\))
\(\Leftrightarrow-2+x=3\)
\(\Leftrightarrow x=3+2\)
\(\Leftrightarrow x=5\left(tm\right)\)
Vậy \(S=\left\{-1;5\right\}\)
√(x² + x + 1) = 1
⇔ x² + x + 1 = 1
⇔ x² + x = 0
⇔ x(x + 1) = 0
⇔ x = 0 hoặc x + 1 = 0
*) x + 1 = 0
⇔ x = -1
Vậy x = 0; x = -1
--------------------
√(x² + 1) = -3
Do x² ≥ 0 với mọi x
⇒ x² + 1 > 0 với mọi x
⇒ x² + 1 = -3 là vô lý
Vậy không tìm được x thỏa mãn yêu cầu
--------------------
√(x² - 10x + 25) = 7 - 2x
⇔ √(x - 5)² = 7 - 2x
⇔ |x - 5| = 7 - 2x (1)
*) Với x ≥ 5, ta có
(1) ⇔ x - 5 = 7 - 2x
⇔ x + 2x = 7 + 5
⇔ 3x = 12
⇔ x = 4 (loại)
*) Với x < 5, ta có:
(1) ⇔ 5 - x = 7 - 2x
⇔ -x + 2x = 7 - 5
⇔ x = 2 (nhận)
Vậy x = 2
--------------------
√(2x + 5) = 5
⇔ 2x + 5 = 25
⇔ 2x = 20
⇔ x = 20 : 2
⇔ x = 10
Vậy x = 10
-------------------
√(x² - 4x + 4) - 2x +5 = 0
⇔ √(x - 2)² - 2x + 5 = 0
⇔ |x - 2| - 2x + 5 = 0 (2)
*) Với x ≥ 2, ta có:
(2) ⇔ x - 2 - 2x + 5 = 0
⇔ -x + 3 = 0
⇔ x = 3 (nhận)
*) Với x < 2, ta có:
(2) ⇔ 2 - x - 2x + 5 = 0
⇔ -3x + 7 = 0
⇔ 3x = 7
⇔ x = 7/3 (loại)
Vậy x = 3
1)
\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)
3)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)
Nếu \(x\ge5\) thì
\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)
=> Loại trường hợp này
Nếu \(x< 5\) thì
\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)
=> Nhận trường hợp này
Vậy x = 2
4)
\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)
5)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)
Nếu \(x\ge2\) thì
\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)
=> Nhận trường hợp này
Nếu \(x< 2\) thì
\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)
=> Loại trường hợp này
Vậy x = 3
a: =>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>2x=-2 hoặc 2x=4
=>x=2 hoặc x=-1
c: \(\Leftrightarrow\left|x-3\right|=11-x\)
=>x<=11 và (x-3)^2=(11-x)^2
=>x<=11 và x^2-6x+9=x^2-22x+121
=>x<=11 và 16x=112
=>x=7
d:
ĐKXĐ: 3x+19>=0
=>x>=-19/3
PT =>x>=-3 và (3x+19)=(x+3)^2=x^2+6x+9
=>x>=-3 và x^2+6x+9-3x-19=0
=>x>=-3 và (x+5)(x-2)=0
=>x=2
e: =>\(\sqrt{x^2+x+5}=x+1\)
=>x>=-1 và x^2+x+5=x^2+2x+1
=>x>=-1 và 2x+1=x+5
=>x=4
1:
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
=>x-3=0 hoặc \(\sqrt{x+3}=2\)
=>x=3 hoặc x+3=4
=>x=1(loại) hoặc x=3(nhận)
2:
\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)
=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)
=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)
=>4(12x^2-16x+3x-4)=(7x-6)^2
=>49x^2-84x+36=48x^2-52x-16
=>-84x+36=-52x-16
=>-32x=-52
=>x=13/8
3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)
=>|x-5|=5-x
=>x-5<=0
=>x<=5
4: \(\Leftrightarrow\left|x-4\right|=x+2\)
=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)
=>x>=-2 và -8x+16=4x+4
=>x=1
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
tth@Nk>↑@HISINOMA KINIMADONguyễn Huy TúAkai HarumaMysterious Persongiúp em với em cảm ơn trước
ok, đợi chút, để em xem nghiệm có xấu ko đã:D Nghiệm xấu thì em ko làm đâu@@