\(\sqrt{9-x}+\sqrt{x-5}=-x^2+10x-23\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

tth@Nk>↑@HISINOMA KINIMADONguyễn Huy TúAkai HarumaMysterious Persongiúp em với em cảm ơn trước

21 tháng 10 2019

ok, đợi chút, để em xem nghiệm có xấu ko đã:D Nghiệm xấu thì em ko làm đâu@@

30 tháng 8 2017

Ta có:\(\hept{\begin{cases}\sqrt{x^2-8x+16}+\sqrt{x^2-12x+36}=|x-4|+|6-x|\ge|x-4+6-x|=2\\-x^2+10x-23=-\left(x^2-10x+23\right)=-\left(x^2-10x+25-2\right)=-\left(x-5\right)^2+2\le2\end{cases}}\)

Dấu " = " xảy ra khi: x = 5.

Vậy x = 5.

20 tháng 1 2019

a.

\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)

\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)

\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)

b.

\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)

\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)

\(\Leftrightarrow x^2-8=5x+1\)

\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)

............................

tương tự ..

c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)

=>x-5=0 hoặc x+5=1

=>x=-4 hoặc x=5

d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=7/2 hoặc x=-3/2

e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

=>x-2=0 hoặc 3 căn x+2=1

=>x=2 hoặc x+2=1/9

=>x=-17/9 hoặc x=2

7 tháng 9 2020

a) \(\sqrt{25x^2-10x+1}=x+2\)

<=> \(\sqrt{\left(5x-1\right)^2}=x+2\)

<=> \(\left|5x-1\right|=x+2\)

TH1: 5x - 1 \(\ge\)0 <=> x \(\ge\)1/5

Khi đó pt trở thành: 5x - 1 = x + 2

<=> 4x = 3 <=> x = 3/4 (tm)

TH2: 5x - 1 < 0 <=>  x < 1/5

Khi đó pt trở thành:  1 - 5x = x + 2

<=> -6x = 1 <=> x = -1/6 (tm)

Vậy S = {3/4; -1/6}

b) \(\sqrt{4x^2+12x+9}=7\)

<=> \(\sqrt{\left(2x+3\right)^2}=7\)

<=> \(\left|2x+3\right|=7\)

TH1: 2x + 3 \(\ge\)0 <=> x \(\ge\)-3/2

Khi đó pt trở thành: 2x + 3 = 7 <=> 2x = 4 <=> x = 2 (Tm)

TH2: 2x + 3 < 0 <=> x < -3/2

Khi đó pt trở thành: -2x - 3 = 7

<=> -2x = 10 <=> x = -5 (tm)

Vậy S = {-5; 2}

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............

22 tháng 6 2017

c/ \(C=\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}\)

\(=\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}\)

\(=|3-x|+|x+5|\ge|3-x+x+5|=8\)

d/ \(D=\sqrt{x^2-6x+9}+\sqrt{4x^2+24x+36}\)

\(=\sqrt{\left(x-3\right)^2}+\sqrt{4\left(x+3\right)^2}\)

\(=|3-x|+|x+3|+|x+3|\ge|3-x+x+3|+0=6\)

e/ \(2E=\sqrt{x^2}+2\sqrt{x^2-2x+1}\)

\(=\sqrt{x^2}+2\sqrt{\left(x-1\right)^2}\)

\(=|x|+|1-x|+|x-1|\ge|x+1-x|+0=1\)

\(\Rightarrow E\ge\frac{1}{2}\)

11 tháng 7 2016

a) \(\sqrt{x^2-10x+25}+\sqrt{x^2-6x+9}=\sqrt{\left(x-5\right)^2}+\sqrt{\left(x-3\right)^2}=\left|x-5\right|+\left|x-3\right|\)

Vì x > 5 nên x - 5 > 0 , x - 3 > 0

=> \(\left|x-5\right|+\left|x-3\right|=x-5+x-3=2x-8\)

b) Điều kiện phải là \(2\le x< 3\)

 \(\sqrt{x^2-6x+9}-\sqrt{x^2-4x+4}=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-2\right)^2}=\left|x-3\right|-\left|x-2\right|\)

Vì \(2\le x< 3\Rightarrow\hept{\begin{cases}x-2\ge0\\x-3< 0\end{cases}}\)

=> \(\left|x-3\right|-\left|x-2\right|=3-x-\left(x-2\right)=-2x+5\)

4 tháng 7 2019

Làm hơi tắt xíu, có gì ko hiểu cmt nha :>

\(a.\sqrt{x-1}=3\left(ĐK:x\ge1\right)\Leftrightarrow x-1=9\Leftrightarrow x=10\)

\(b.\sqrt{x^2-4x+4}=2\\ \Leftrightarrow\sqrt{\left(x-2\right)^2}=2\\ \Leftrightarrow\left|x-2\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2\left(x\ge2\right)\\2-x=2\left(x< 2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

\(c.\sqrt{25x^2-10x+1}=4x-9\\ \Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x-9\\ \Leftrightarrow\left|5x-1\right|=4x-9\\\Leftrightarrow \left[{}\begin{matrix}5x-1=4x-9\left(x\ge\frac{1}{5}\right)\\1-5x=4x-9\left(x< \frac{1}{5}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-8\left(ktm\right)\\x=\frac{10}{9}\left(ktm\right)\end{matrix}\right.\)

4 tháng 7 2019

\(d.\sqrt{x^2+2x+1}=\sqrt{x+1}\left(ĐK:x\ge-1\right)\\ \Leftrightarrow x^2+2x+1=x+1\\ \Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

e. ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\\ \Leftrightarrow\sqrt{x-3}=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\)

Câu cuối chưa nghĩ ra, sorry :<