Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow\sqrt{x^2+x+1}>0\forall x\)
voi dk \(x\ge-1\) ta co
\(x^2+x+1=x^2+2x+1\Rightarrow x=0\)(tm)
b,\(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|+2x=5\)
th1 \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\) ta co\(2x-5+2x=5\Leftrightarrow4x=10\Rightarrow x=2.5\left(tm\right)\)
th2 \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\) \(5-2x+2x=5\Leftrightarrow5=5\)
\(\Rightarrow\) dung voi moi \(x< \frac{5}{2}\)
kl \(x\le\frac{5}{2}\)
c, \(\left|x-1\right|=4\) \(\Rightarrow\orbr{\begin{cases}x-1=4\left(x\ge1\right)\\x-1=-4\left(x< 1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=-3\left(tm\right)\end{cases}}}\)
d.\(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\)
=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{4}+\sqrt{16}=6\)
ma \(-x^2-2x+5=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
dau = xay ra \(\Leftrightarrow x=-1\)
f/
ĐKXĐ: ...
Đặt \(\sqrt{2-x}+\sqrt{x+2}=a>0\)
\(\Rightarrow a^2=4+2\sqrt{4-x^2}\Rightarrow\sqrt{4-x^2}=\frac{a^2-4}{2}\)
Phương trình trở thành:
\(a+\frac{a^2-4}{2}=2\)
\(\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{4-x^2}=\frac{a^2-4}{2}=0\)
\(\Rightarrow4-x^2=0\Rightarrow x=\pm2\)
e/ ĐKXĐ: ...
Đặt \(\sqrt{x+1}+\sqrt{4-x}=a>0\)
\(\Rightarrow a^2=5+2\sqrt{\left(x+1\right)\left(4-x\right)}\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{a^2-5}{2}\)
Pt trở thành:
\(a+\frac{a^2-5}{2}=5\)
\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}+\sqrt{4-x}=3\)
\(\Leftrightarrow5+2\sqrt{\left(x+1\right)\left(4-x\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=2\)
\(\Leftrightarrow\left(x+1\right)\left(4-x\right)=4\)
\(\Leftrightarrow-x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
a.
\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)
\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)
b.
\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)
\(\Leftrightarrow x^2-8=5x+1\)
\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)
............................
tương tự ..
c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
=>x-5=0 hoặc x+5=1
=>x=-4 hoặc x=5
d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=7/2 hoặc x=-3/2
e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
=>x-2=0 hoặc 3 căn x+2=1
=>x=2 hoặc x+2=1/9
=>x=-17/9 hoặc x=2
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
I) xd mọi x
\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)
\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)
\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)
kết luận
\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)
Có: \(VT=\left|1-x\right|+\left|x-2\right|\)
\(\ge\left|1-x+x-2\right|=3=VP\)
Khi \(x=0;x=3\)
b)\(\sqrt{x^2-10x+25}=3-19x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)
\(\Leftrightarrow\left|x-5\right|=3-19x\)
\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)
\(\Leftrightarrow-360x^2+104x+16=0\)
\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)
\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)
c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
√(x² + x + 1) = 1
⇔ x² + x + 1 = 1
⇔ x² + x = 0
⇔ x(x + 1) = 0
⇔ x = 0 hoặc x + 1 = 0
*) x + 1 = 0
⇔ x = -1
Vậy x = 0; x = -1
--------------------
√(x² + 1) = -3
Do x² ≥ 0 với mọi x
⇒ x² + 1 > 0 với mọi x
⇒ x² + 1 = -3 là vô lý
Vậy không tìm được x thỏa mãn yêu cầu
--------------------
√(x² - 10x + 25) = 7 - 2x
⇔ √(x - 5)² = 7 - 2x
⇔ |x - 5| = 7 - 2x (1)
*) Với x ≥ 5, ta có
(1) ⇔ x - 5 = 7 - 2x
⇔ x + 2x = 7 + 5
⇔ 3x = 12
⇔ x = 4 (loại)
*) Với x < 5, ta có:
(1) ⇔ 5 - x = 7 - 2x
⇔ -x + 2x = 7 - 5
⇔ x = 2 (nhận)
Vậy x = 2
--------------------
√(2x + 5) = 5
⇔ 2x + 5 = 25
⇔ 2x = 20
⇔ x = 20 : 2
⇔ x = 10
Vậy x = 10
-------------------
√(x² - 4x + 4) - 2x +5 = 0
⇔ √(x - 2)² - 2x + 5 = 0
⇔ |x - 2| - 2x + 5 = 0 (2)
*) Với x ≥ 2, ta có:
(2) ⇔ x - 2 - 2x + 5 = 0
⇔ -x + 3 = 0
⇔ x = 3 (nhận)
*) Với x < 2, ta có:
(2) ⇔ 2 - x - 2x + 5 = 0
⇔ -3x + 7 = 0
⇔ 3x = 7
⇔ x = 7/3 (loại)
Vậy x = 3
1)
\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)
3)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)
Nếu \(x\ge5\) thì
\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)
=> Loại trường hợp này
Nếu \(x< 5\) thì
\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)
=> Nhận trường hợp này
Vậy x = 2
4)
\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)
5)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)
Nếu \(x\ge2\) thì
\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)
=> Nhận trường hợp này
Nếu \(x< 2\) thì
\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)
=> Loại trường hợp này
Vậy x = 3