K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

Đặt x/y = y/z = z/t = k

=> x/y . y/z . z/t = x/t k^3 (1)

Có x/y = y/z = z/t = k = x + y + z/y + z + t(t/c dãy tỉ số bằng nhau)

=> x^3/y^3 + y^3/z^3 + z^3/t^3 = x^3 + y^3 + z^3/y^3 + z^3 + t^3 = k^3 (2)

Từ (1) và (2) => x^3 + y^3 + z^3/y^3 + z^3 + t^3 = x/t = k^3

Vậy x^3 + y^3 + z^3/y^3 + z^3 + t^3 = x/t 

12 tháng 9 2020

\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)

Đẳng thức xảy ra khi x = y = z = t > 0 

13 tháng 10 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\frac{x+y+z}{y+z+t}\)

\(\frac{x^3+y^3+z^3}{y^3+z^3+t^3}\Leftrightarrow\left(\frac{x+y+z}{y+z+t}\right)^3\)

\(\Rightarrow\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}.\frac{x+y+z}{y+z+t}.\frac{x+y+z}{y+z+t}=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{x}{t}\) (đpcm)

26 tháng 5 2015

đặt A=x/x+y+z    +y/y+z+t   +z/z+t+x   +t/t+x+y

ta có      x/x+y+z>x/x+y+z+t

y/y+z+t>y/x+y+z+t

z/z+t+x>z/z+t+x+y

t/t+x+y>t/x+t+y+z

=>A>x/x+y+t+z  +t/x+y+t+z  +z/x+y+t+z  +y/x+t+y+z=x+y+z+t/x+y+z+t=1>3/4  (1)

*)y/y+z+t<y+x/y+z+t+x

x/x+y+z<x+t/x+y+z+t

z/z+t+x<z+y/x+y+z+t

t/t+x+y<t+z/t+x+y+z

=>A<y+x/x+y+z+t  +x+t/x+y+z+t  +z+y/x+y+z+t  +t+z/x+y+z+t

            =y+x+x+t+z+y+t+z/x+y+z+t=2(x+y+z+t)/x+y+z+t=2<5/2   (2)

từ (1) và (2) =>3/4<A<5/2

=>

26 tháng 5 2015

Ta có:

\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<\frac{x+t}{x+y+z+t}+\frac{x+y}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+t}{x+y+z+t}\)

\(\Rightarrow1<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<2\)

\(\Rightarrow\frac{3}{4}<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<\frac{5}{2}\)

5 tháng 8 2019

b)

Ta có: \(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}.\)

\(\frac{y}{5}=\frac{z}{4}=>\frac{y}{15}=\frac{z}{12}.\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)\(x-y+z=-49.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7.\)

\(\left\{{}\begin{matrix}\frac{x}{10}=-7=>x=\left(-7\right).10=-70\\\frac{y}{15}=-7=>y=\left(-7\right).15=-105\\\frac{z}{12}=-7=>z=\left(-7\right).12=-84\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(-70;-105;-84\right).\)

Chúc bạn học tốt!

5 tháng 8 2019

a) Ta có: \(\frac{x}{5}\)= \(\frac{y}{3}\) =>\(\frac{x}{25}\)= \(\frac{y}{15}\)

\(\frac{y}{5}\)= \(\frac{z}{7}\) => \(\frac{y}{15}\)= \(\frac{z}{21}\)

=> \(\frac{x}{25}\)= \(\frac{y}{15}\)= \(\frac{z}{21}\)=> \(\frac{5x}{125}\)= \(\frac{y}{15}\)= \(\frac{2z}{42}\)

Áp dụng tính chất dãy tỉ số = nhau

Ta có: \(\frac{5x}{125}\)= \(\frac{y}{15}\)= \(\frac{2z}{42}\)= \(\frac{5x+y-2z}{125+15-42}\)= \(\frac{28}{98}\)= \(\frac{2}{7}\)

Vậy x = \(\frac{50}{7}\)

y = \(\frac{30}{7}\)

z = 6

Bạn xem lại ý sau sao lại có 2 chữ x mà ko có z nhé!

b) Ta có: \(\frac{x}{2}\)= \(\frac{y}{3}\)=> \(\frac{x}{10}\)= \(\frac{y}{15}\)

\(\frac{y}{5}\)= \(\frac{z}{4}\)=> \(\frac{y}{15}\)= \(\frac{z}{12}\)

=> \(\frac{x}{10}\)= \(\frac{y}{15}\)= \(\frac{z}{12}\)

Áp dụng tính chất dãy tỉ số = nhau

Ta có: \(\frac{x}{10}\)= \(\frac{y}{15}\)= \(\frac{z}{12}\)= \(\frac{x-y+z}{10-15+12}\)= \(\frac{-49}{7}\)= -7

Vậy x = -70

y = -105

z = -84

c) Ta có: \(\frac{x}{3}\)= \(\frac{y}{4}\)=> \(\frac{x}{15}\)= \(\frac{y}{20}\)

\(\frac{y}{5}\)= \(\frac{z}{7}\)=> \(\frac{y}{20}\)= \(\frac{z}{28}\)

=> \(\frac{x}{15}\)= \(\frac{y}{20}\)= \(\frac{z}{28}\)= \(\frac{2x}{30}\)= \(\frac{3y}{60}\)= \(\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số = nhau

Ta có: \(\frac{2x}{30}\)= \(\frac{3y}{60}\)= \(\frac{z}{28}\)= \(\frac{2x+3y-z}{30+60-28}\)= \(\frac{186}{62}\)= 3

Vậy x = 45

y = 60

z = 84