tìm số nguyên tố p sao cho 5p2 +1 là số nguyên tố.. giải chi tiết giùm mình nha. cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)*Xét p=2=>p+2=4 là hợp số(loại)
*Xét p=3=>p+2=5
p+4=7(thoả mãn)
*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2
-Với p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số(loại)
-Với p=3k+2=>p+4=3k+2+4=3k+6=3.(k+2) là hợp số(loại)
Vậy p=3 thoả mãn đề bài.
b)*Xét p=2=>p+10=12 là hợp số(loại)
*Xét p=3=>p+10=13
p+14=17(thoả mãn)
*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2
-Với p=3k+1=>p+14=3k+1+14=3k+15=3.(k+5) là hợp số(loại)
-Với p=3k+2=>p+10=3k+2+10=3k+12=3.(k+4) là hợp số(loại)
Vậy p=3 thoả mãn đề bài.
p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 ( k thuộc N)
nếu p = 3k+1 thì p+8 = (3k+1)+8 = 3k+9=3.(k+3) chia hết cho 3 (loại)
nếu p = 3k+2 thì p+8 = (3k+2)+9 = 3k +10 có thể là số nguyên tố (chọn)
khi đó p+10= (3k+2)+100=3k+102=3.(k+34) chia hết cho 3
Vậy là hợp số
Vì P > 3 nên P = 3k + 1 hoặc P = 3k + 2.
+Với P = 3k + 1 thì P + 8 = 3k + 1 + 8 = 3k + 9 = 3.( k + 3) chia hết cho 3.
Vì P + 8 vhia hết cho 3 mà P + 8 > 3 nên P + 8 là hợp số ( loại )
+ Với P = 3k + 2 thì P + 100 = 3k + 2 +100 = 3k + 102 =3. (k + 34) chia hết cho 3.
Vì P + 100 chia hết cho 3 mà P + 100 > 3 nên P + 100 là hợp số.
Vậy với P và P + 8 là số nguyên tố ( P > 3) thì P + 100 là hợp số.
a) Xét:
\(+p=2\Rightarrow3p+5=2.3 +5=11\left(TM\right)\)
+) \(p>2\). Do P là so nguyen to nen p lẻ \(\Rightarrow3p+5\)chan và \(3p+5>2\)\(\Rightarrow3p+5là\)hop so
Vay p=2
b) Xét:'
\(+p=2\Rightarrow p+8=10\left(ktm\right)\)
\(+p=3\Rightarrow p+8=11;p+10=13\left(TM\right)\)
\(+p>3\).Do p là so nguyen to nen \(p=3k+1;p=3k+2\left(k\inℕ^∗\right)\)
\(-p=3k+1\Rightarrow p+8=3\left(k+3\right)⋮3\left(loại\right)\)
\(-p=3k+2\Rightarrow p+10=3\left(k+4\right)⋮3\left(loại\right)\)
Vay p=3
a/ Xét p lẻ => 3p + 5 là số chẵn nên chia hết cho 2 mà 3p + 5 > 2 nên loại.
Xét p = 2 => 3.2 + 5 = 11 (nhận)
b/ Ta thấy 8 chia 3 dư 2; 10 chia 3 dư 1. Nên để đồng thời p + 8 và p + 10 là số nguyên tố thì p khi chia cho 3 không thể có số dư là 1 hoặc 2.
=> p = 3
a, nếu P=2 => P+2=2+2=4 (loại)
nếu P=3 => P+2=3+2=5
P+10 = 3+10=13 (thỏa mãn)
nếu P>3 => P= 3k+1 hoặc 3k+2
+ P= 3k+1=>P+2=3k+1+2=3k+3=3(k+1) (loại)
+ P=3k+2=>P+10=3k+2+10=3k+12=3(k+4) (loại)
vậy P=3 thỏa mãn bài toán
P là hợp số
vi 2001.2002.2003.2004=...1 . ...2 . ...3. ...4=.........4
Cộng thêm 1 là 5 chia hết cho 5
=. P là hợp số
Ta có : P = 2001.2002.2003.2004+1 = (2001.2002.2003.2004)+1 = (......4)+1 = (......5) * 5
vậy P là hợp số