K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2015

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 ( k thuộc N)

nếu p = 3k+1 thì p+8 = (3k+1)+8 = 3k+9=3.(k+3) chia hết cho 3 (loại)

nếu p = 3k+2 thì p+8 = (3k+2)+9 = 3k +10 có thể là số nguyên tố (chọn)

khi đó p+10= (3k+2)+100=3k+102=3.(k+34) chia hết cho 3

Vậy là hợp số

26 tháng 3 2016

Vì P > 3 nên P = 3k + 1 hoặc P = 3k + 2.

+Với P = 3k + 1 thì P + 8 = 3k + 1 + 8 = 3k + 9 = 3.( k + 3) chia hết cho 3.

       Vì P + 8 vhia hết cho 3 mà P + 8 > 3 nên P + 8 là hợp số ( loại ) 

+ Với P = 3k + 2 thì P + 100 = 3k + 2 +100 = 3k + 102 =3. (k + 34) chia hết cho 3.

      Vì P + 100 chia hết cho 3 mà P + 100 > 3 nên P + 100 là hợp số.

         Vậy với P và P + 8 là số nguyên tố ( P > 3) thì P + 100 là hợp số.

20 tháng 12 2015

ai tick cho tui với à

ai làm chi tiết cho mik đi mik tick người đó 5 li-ke

11 tháng 1 2016

Nếu p=2 thi p+8 =10 là hợp số(không thỏa mãn)

Nếu p=3 thì p+8 =11 là số nguyên tố(thỏa mãn)

                  p+100=103 là số nguyên tố(thỏa mãn)

Vậy p =3 thỏa mãn

Nếu p>3 thi p có dạng p=3k+1 và 3k+2

Với p = 3k +1 thi p+8=3k +9 chia hết cho 3 là hợp số(không thỏa mãn)

Với p=3k+2 thi p + 100=3k+102 chia het cho 3(không thỏa mãn)

Vậy p=3 thi p+8 và p+100 là số nguyên tố

---------------Hết--------------

30 tháng 10 2015

a)*Xét p=2=>p+2=4 là hợp số(loại)

*Xét p=3=>p+2=5

                   p+4=7(thoả mãn)

*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2

-Với p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số(loại)

-Với p=3k+2=>p+4=3k+2+4=3k+6=3.(k+2) là hợp số(loại)

Vậy p=3 thoả mãn đề bài.

b)*Xét p=2=>p+10=12 là hợp số(loại)

*Xét p=3=>p+10=13

                   p+14=17(thoả mãn)

*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2

-Với p=3k+1=>p+14=3k+1+14=3k+15=3.(k+5) là hợp số(loại)

-Với p=3k+2=>p+10=3k+2+10=3k+12=3.(k+4) là hợp số(loại)

Vậy p=3 thoả mãn đề bài.

10 tháng 1 2016

Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:

Với n = 3k +1 thì:

 n^2 + 2006 = (3k+1). (3k+1) +2006

                  = 9.k.k + 3k+3k+1 + 2006

                  = 3.(3.k.k +1+1)+1+2006

                  = 3.(3.k.k +1+1) + 2007 chia hết cho 3

=> Với n = 3k+1 thì n^2 + 2006 là hợp số 

Với n= 3k+2 thì:

(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006

                             =3(3.k.k + 2k +2k)+4+2006

                             =3(3.k.k +2k+2k)+2010 chia hết cho 3

=>Với n = 3k+2 thì n^2 +2006 là hợp số

Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số

(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)

 

                   =

 

 

10 tháng 1 2016

TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007 

3k(3k + 2)  chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3   (1)

TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010

3k(3k + 4)  chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3  (2)

Từ (1) và (2) => n2 + 2006 là hợp số

24 tháng 10 2015

p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3 ;p có dạng:3k+2 hoặc 3k+1

nếu p có dạng 3k+1 thì p+8=(3k+1)+8=3k+9 chia hết cho 3 ,là hợp số

nếu p có dạng 3k+2 khi đó p+100=(3k+2)+100=3k+102 chia hết cho 3=> p+100 là hợp số(vì chia hết cho 3)

24 tháng 10 2015

Vì p là số nguyên tố lớn hơn 3 => p thuộc dạng 3k + 1 hoặc 3k + 2.

*) Với p = 3k + 1 => p + 8 = 3k + 9 chia hết cho 3 => hợp số => vô lí vì p + 8 là số nguyên tố

*) Với p = 3k + 2 => p + 8 = 3k + 10 chia 3 dư 1 (thỏa mãn)

=> p =3k + 2 => p + 100 = 3k + 102 chia hết cho 3 => hợp số 

=> p + 100 là hợp số.