\(\sqrt[3]{x+5}+\sqrt[3]{x+6}=\sqrt[3]{2x+11}\)
giúp mik vs mik cần gấp ạ
\(\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=2\sqrt{6}\cdot3\sqrt{6}-4\sqrt{3}\cdot3\sqrt{6}+5\sqrt{2}\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+30\sqrt{3}\)
a: Ta có: \(P=\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{\sqrt{x}-1}{\sqrt{x}-x}+\dfrac{\sqrt{x}+3}{x+5\sqrt{x}+6}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b, \(\dfrac{2}{\sqrt{5}+2}+\dfrac{2}{2-\sqrt{5}}\)
\(=\dfrac{2\left(\sqrt{5}-2\right)}{5-4}-\dfrac{2\left(\sqrt{5}+2\right)}{5-4}\)
\(=2\sqrt{5}-4-2\sqrt{5}-4=-8\)
a: Thay \(x=7-4\sqrt{3}\) vào A, ta được:
\(A=2-\sqrt{3}-7+4\sqrt{3}=3\sqrt{3}-5\)
Ta có: \(\sqrt{2x+7}-6=x\)
\(\Leftrightarrow\sqrt{2x+7}=x+6\)
\(\Leftrightarrow x^2+12x+36-2x-7=0\)
\(\Leftrightarrow x^2+10x+29=0\)(Vô lý)
Vậy: \(S=\varnothing\)
bn mũ 3 lên đc bao nhiêu đã
sau đó p/t thành nhân tử đặt nhân tử chung
hok tốt
PT <=> \(x+5+x+6=2x+11\)
\(2x+11=2x+11\Leftrightarrow0=0\)