S.2^8S=1+2+2^2+...+2^9
Hãy so sánh S và S.28.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+3^2+3^4+...+3^{100}\)
\(\Rightarrow9S=3^2+3^4+....+3^{102}\)
\(\Rightarrow9S-S=\left(3^2+....+3^{102}\right)-\left(1+....+3^{100}\right)\)
\(\Rightarrow8S=3^{102}-1=9^{51}-1>8^{51}:2=2^{152}\)
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
HT
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
\(S=1+2+2^2+...+2^9\)
\(2S=\left(1+2+2^2+...+2^9\right).2\)
\(2S=2+2^2+2^3+...+2^{10}\)
\(2S-S=\left(2+2^2+2^3+...+2^{10}\right)\)\(-\left(1+2+2^2+...+2^9\right)\)
\(S=2^{10}-1\)
\(\Rightarrow S=2^8.4-1\)
Vì\(4.2^8< 5.2^8\Rightarrow S< 5.2^8\)
easy S < S.28