Tìm cặp (x,y) nguyên biết: xy+3x-5y=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy-2x+5y-12=0 => xy-2x+5y=12 => x(y-2)+5y=0 hoặc y(5+x)-2x=0
......
viets pt ra:
x(y-2)+5(y-2)-2=0
(x+5)(y-2)=2=2*1=1*2=-1*-2=-2*-1
kẻ bảng rồi tính tiếp nha
\(xy-2x+5y-12=0\)
\(\Leftrightarrow xy-2x+5y-10=2\)
\(\Leftrightarrow x\left(y-2\right)+5\left(y-2\right)=2\)
\(\Leftrightarrow\left(x+5\right)\left(y-2\right)=2\)
Sau đó lập bảng là ra
Tìm cặp số nguyên (x,y) sao cho :
A) xy + 3x - 2y - 7 = 0
B) xy - x + 5y - 7 = 0
C ) x + 2y = xy + 2
ĐKXĐ : x,y ∈ Z
a) xy + 3x - 2y - 7 = 0
<=> x( y + 3 ) - 2( y + 3 ) - 1 = 0
<=> ( y + 3 )( x - 2 ) = 1
Ta có bảng sau :
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | 1 |
y | -2 | -4 |
Vậy ( x ; y ) = { ( 3 ; -2 ) , ( 1 ; -4 ) }
b) xy - x + 5y - 7 = 0
<=> x( y - 1 ) + 5( y - 1 ) - 2 = 0
<=> ( y - 1 )( x + 5 ) = 2
Ta có bảng sau :
x+5 | 1 | -1 | 2 | -2 |
y-1 | 2 | -2 | 1 | -1 |
x | -4 | -6 | -3 | -7 |
y | 3 | -1 | 2 | 0 |
Vậy ( x ; y ) = { ( -4 ; 3 ) , ( -6 ; -1 ) , ( -3 ; 2 ) , ( -7 ; 0 ) }
c) x + 2y = xy + 2
<=> x + 2y - xy - 2 = 0
<=> x( 1 - y ) - 2( 1 - y ) = 0
<=> ( x - 2 )( 1 - y ) = 0
<=> \(\hept{\begin{cases}x-2=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy ( x ; y ) = ( 2 ; 1 )
à cho mình sửa ý c) một chút nhé
( x - 2 )( 1 - y ) = 0
Với x - 2 = 0 => x = 2 và nghiệm đúng ∀ y ∈ R
Với 1 - y = 0 => y = 1 và nghiệm đúng ∀ x ∈ R
Ta có : xy - 2x + 5y - 12 = 0 <=> y(x + 5) - 2(x+5) -2 = 0 <=> (y - 2)(x + 5) = 2
(bạn tự lập bảng rồi làm tiếp nha)
xy+3x-5y=2 xy+3x-5y+15=2+15 xy+3x-5y+5.3=17 x.(3+y)-5.(3+y)=17 (x-5).(3+y)=17 17=1.17=17.1=-1.-17=-17.-1 tự lập bảng và tìm kết quả
x(3+y) - 5y = 18
=> x(3+y) - 5y - 15 = 18 - 15
=> x(3+y) - (5y+15) = 3
=> x(3+y) - 5(3+y) = 3
=> (3+y)(x-5) = 3
Ta có bảng:
3+y | 1 | 3 | -1 | -3 |
y | -2 | 0 | -4 | -6 |
x-5 | 3 | 1 | -3 | -1 |
x | 8 | 6 | 2 | 4 |
Vậy (x;y) = (8;-2), (6;0), (2;-4), (4;-6)
\(xy+3x-5y=18\)
\(\Leftrightarrow xy+3x-5y-15=18-15\)
\(\Leftrightarrow x\left(y+3\right)-5\left(y+3\right)=3\)
\(\Leftrightarrow\left(y+3\right)\left(x-5\right)=3\)
\(\Rightarrow y+3;x-5\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng giá trị
x-5 | -3 | 1 | -1 | 3 |
x | 2 | 6 | 4 | 8 |
y+3 | -1 | 3 | -3 | 1 |
y | -4 | 0 | -6 | -2 |
Đối chiếu điều kiện x;y \(\inℤ\)
Vậy (x;y)=(2;-4);(6;0);(4;-6);(8;-2)
xy - 2x + y = 3
=> x ( y - 2) + ( y - 2 ) = 3 - 2
=> ( x + 1 ) ( y - 2 ) = 1
=> x + 1 và y - 2 thuộc Ư(1) = { 1; -1 }
Lập bảng:
x + 1 | 1 | -1 |
x | 0 | -2 |
y - 2 | -1 | 1 |
y | 1 | 3 |
Vậy x=0 , y=-2 hoặc x=1 , y=3
\(\text{xy - 2x + y = 3}\)
\(\text{\Rightarrow x ( y - 2) + ( y - 2 ) = 3 - 2}\)
\(\text{\Rightarrow( x + 1 ) ( y - 2 ) = 1}\)
=> \(\text{x + 1}\) và \(\text{y - 2}\) thuộc \(Ư_{\left(1\right)}\in\left\{\pm1\right\}\)
Lập bảng:
\(x+1\) | \(1\) | \(-1\) |
\(x\) | \(0\) | \(-2\) |
\(y-2\) | \(-1\) | \(1\) |
\(y\) | \(1\) | \(3\) |
Vậy \(\left(x;y\right)\in\left\{\left(0;-2\right);\left(1;3\right)\right\}\)
Lời giải:
$xy+3x-5y=3$
$x(y+3)-5(y+3)=-12$
$(x-5)(y+3)=-12$
Với $x,y$ nguyên thì $x-5, y+3$ cũng là số nguyên. Mà tích của chúng bằng -12 nên ta xét các TH sau:
TH1: $x-5=1, y+3=-12\Rightarrow x=6; y=-15$
TH2: $x-5=-1, y+3=12\Rightarrow x=4; y=9$
TH3: $x-5=2, y+3=-6\Rightarrow x=7; y=-9$
TH4: $x-5=-2, y+3=6\Rightarrow x=3; y=3$
TH5: $x-5=3, y+3=-4\Rightarrow x=8; y=-7$
TH6: $x-5=-3, y+3=4\Rightarrow x=2; y=1$
TH7: $x-5=4, y+3=-3\Rightarrow x=9; y=-6$
TH8: $x-5=-4, y+3=3\Rightarrow x=1; y=0$
TH9: $x-5=6, y+3=-2\Rightarrow x=11; y=-5$
TH10: $x-5=-6, y+3=2\Rightarrow x=-1; y=-1$
TH11: $x-5=12, y+3=-1\Rightarrow x=17; y=-4$
TH12: $x-5=-12, y+3=1\Rightarrow x=-7, y=-2$