chung minh n la so tu nhien
a(2n+1+33n+1)chi het cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
Câu 1:
=>n(n+1)=1275
=>n^2+n-1275=0
=>\(n\in\varnothing\)
Câu 2:
a: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
b: Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hết cho d
=>1 chia hết cho d
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
\(a,n^5-n=n.\left(n^4-1\right)=n.\left(n^2-1\right).\left(n^2+1\right)\)
\(=n.\left(n^2-1\right).\left(n^2-4+5\right)\)
\(=n.\left(n^2-1\right).\left(n^2-4\right)+5n.\left(n^2-1\right)\)
\(=n.\left(n-1\right).\left(n+1\right).\left(n-2\right).\left(n+2\right)+5n.\left(n-1\right).\left(n+1\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)
Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1=>(n-1).n.(n+1) chia hết cho 6
=>5.(n-1).n.(n+1) chia hết cho (5.6)=30 (1)
Vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5 và 6
Mà (5;6)=1=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 30 (2)
Từ (1);(2)=> (n-2).(n-1).n.(n+1).(n+2)+5(n-1).n.(n+1) chia hết cho 30
=>n5-n chia hết cho 30 (đpcm)
\(b,\left(n^2+n-1\right)^2-1=\left(n^2+n-1-1\right).\left(n^2+n-1+1\right)\)
\(=\left(n^2+n-2\right).\left(n^2+n\right)=\left(n^2+2n-n-2\right).n.\left(n+1\right)\)
\(=\left[n\left(n+2\right)-\left(n+2\right)\right].n.\left(n+1\right)=\left(n+2\right)\left(n-1\right).n.\left(n+1\right)\)
\(=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp mà trong 4 số nguyên liên tiếp cũng có 3 số nguyên liên tiếp
=>(n-1).n.(n+1).(n+2) chia hết cho 3 (3)
Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp nên chia hết cho 8 (4)
Từ (3);(4);lại có (3;8)=1
=>(n-1).n.(n+1).(n+2) chia hết cho 24
=>(n2+n-1)2-1 chia hết cho 24 (đpcm)
a = 12 . q + 8
a) 2 x 4 = 8 a chia het cho 4
b) ko có số nào nhân 6 bằng 8 nên a ko chia hết cho 6
9^2n=(9^2)^n=81^n
Vì 81^n-1 có tận cùng = 0 nên sẽ chia hết cho 2
9^2n=(9^2)^n=81^n
vì 81^n-1 có tận cùng bằng 0 nên sẽ chia hết cho 2
1. Ta có dãy chia hết cho 2 : 2,4,6,...,100
Có số ' số chia hết cho 2 là :
(100-2):2+1=50 số
Ta có dãy chia hết cho 5 : 5,10,15,...,100
Có số ' số chia hết cho 5 là :
(100-5):5+1=20 số
2.
- n là số lẻ nên suy ra n+7 là chẵn
=> (n+4)(n+7) là số chẵn
- n là số chẵn suy ra n+4 là chẵn
=> (n+4)(n+7) là số chẵn
Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .
=> đpcm