K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

Viết biểu thức không chuẩn, cái nào số hạng, cái nào là số mũ

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

24 tháng 11 2022

Câu 1: 

=>n(n+1)=1275

=>n^2+n-1275=0

=>\(n\in\varnothing\)

Câu 2:

a: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(2n+1;3n+1)={1;-1}

b: Gọi d=ƯCLN(7n+10;5n+7)

=>35n+50-35n-49 chia hết cho d

=>1 chia hết cho d

=>d=1

=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

3 tháng 8 2016

\(a,n^5-n=n.\left(n^4-1\right)=n.\left(n^2-1\right).\left(n^2+1\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4+5\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4\right)+5n.\left(n^2-1\right)\)

\(=n.\left(n-1\right).\left(n+1\right).\left(n-2\right).\left(n+2\right)+5n.\left(n-1\right).\left(n+1\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)

Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1=>(n-1).n.(n+1) chia hết cho 6

=>5.(n-1).n.(n+1) chia hết cho (5.6)=30  (1)

Vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5 và 6

Mà (5;6)=1=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 30  (2)

Từ (1);(2)=> (n-2).(n-1).n.(n+1).(n+2)+5(n-1).n.(n+1) chia hết cho 30

=>n5-n chia hết cho 30 (đpcm)

\(b,\left(n^2+n-1\right)^2-1=\left(n^2+n-1-1\right).\left(n^2+n-1+1\right)\)

\(=\left(n^2+n-2\right).\left(n^2+n\right)=\left(n^2+2n-n-2\right).n.\left(n+1\right)\)

\(=\left[n\left(n+2\right)-\left(n+2\right)\right].n.\left(n+1\right)=\left(n+2\right)\left(n-1\right).n.\left(n+1\right)\)

\(=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp mà trong 4 số nguyên liên tiếp cũng có 3 số nguyên liên tiếp

=>(n-1).n.(n+1).(n+2) chia hết cho 3 (3)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp nên chia hết cho 8 (4)

Từ (3);(4);lại có (3;8)=1

=>(n-1).n.(n+1).(n+2) chia hết cho 24

=>(n2+n-1)2-1 chia hết cho 24 (đpcm)

1 tháng 7 2017

a = 12 . q + 8

a) 2 x 4 = 8 a chia het cho 4

b) ko có số nào nhân 6 bằng 8 nên a ko chia hết cho 6

1 tháng 11 2016

9^2n=(9^2)^n=81^n

Vì 81^n-1 có tận cùng = 0 nên sẽ chia hết cho 2

8 tháng 11 2017

9^2n=(9^2)^n=81^n

vì 81^n-1 có tận cùng bằng 0 nên sẽ chia hết cho 2

30 tháng 7 2017

1. Ta có dãy chia hết cho 2 : 2,4,6,...,100

Có số ' số chia hết cho 2 là :

(100-2):2+1=50 số

Ta có dãy chia hết cho 5 : 5,10,15,...,100

Có số ' số chia hết cho 5 là :

(100-5):5+1=20 số

2.

- n là số lẻ nên suy ra n+7 là chẵn

=> (n+4)(n+7) là số chẵn

- n là số chẵn suy ra n+4 là chẵn

=> (n+4)(n+7) là số chẵn

Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .

=> đpcm