K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

\(a,n^5-n=n.\left(n^4-1\right)=n.\left(n^2-1\right).\left(n^2+1\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4+5\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4\right)+5n.\left(n^2-1\right)\)

\(=n.\left(n-1\right).\left(n+1\right).\left(n-2\right).\left(n+2\right)+5n.\left(n-1\right).\left(n+1\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)

Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1=>(n-1).n.(n+1) chia hết cho 6

=>5.(n-1).n.(n+1) chia hết cho (5.6)=30  (1)

Vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5 và 6

Mà (5;6)=1=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 30  (2)

Từ (1);(2)=> (n-2).(n-1).n.(n+1).(n+2)+5(n-1).n.(n+1) chia hết cho 30

=>n5-n chia hết cho 30 (đpcm)

\(b,\left(n^2+n-1\right)^2-1=\left(n^2+n-1-1\right).\left(n^2+n-1+1\right)\)

\(=\left(n^2+n-2\right).\left(n^2+n\right)=\left(n^2+2n-n-2\right).n.\left(n+1\right)\)

\(=\left[n\left(n+2\right)-\left(n+2\right)\right].n.\left(n+1\right)=\left(n+2\right)\left(n-1\right).n.\left(n+1\right)\)

\(=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp mà trong 4 số nguyên liên tiếp cũng có 3 số nguyên liên tiếp

=>(n-1).n.(n+1).(n+2) chia hết cho 3 (3)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp nên chia hết cho 8 (4)

Từ (3);(4);lại có (3;8)=1

=>(n-1).n.(n+1).(n+2) chia hết cho 24

=>(n2+n-1)2-1 chia hết cho 24 (đpcm)

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

23 tháng 12 2016

Viết biểu thức không chuẩn, cái nào số hạng, cái nào là số mũ

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

11 tháng 7 2016

55n+1-55n=55n.(55-1)=55n.54 chia hết cho 54

Vậy 55n+1 chia hết cho 54

11 tháng 7 2016

Ta có:\(55^{n+1}-55^n\)

\(=55^n.55-55^n\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\) chia hết cho 54

Vậy \(55^{n+1}-55^n\) chia hết cho 54 với n là số tự nhiên

29 tháng 9 2019

đề sai nha bạn

đề kiểu j vậy bn

mk chịu

28 tháng 8 2018

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)