tính A=\(\frac{3x^2-2xy-4y^2}{4x^2-xy-y^2}\)biết \(\frac{x}{y}\)+\(\frac{y}{x}\)=\(\frac{26}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) (1)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}.\)
Có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}.\)
\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}.\)
=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\) và \(x-y-z=1.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{1}{-4}=\frac{-1}{4}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=-\frac{1}{4}\Rightarrow x=\left(-\frac{1}{4}\right).20=-5\\\frac{y}{15}=-\frac{1}{4}\Rightarrow y=\left(-\frac{1}{4}\right).15=-\frac{15}{4}\\\frac{z}{9}=-\frac{1}{4}\Rightarrow z=\left(-\frac{1}{4}\right).9=-\frac{9}{4}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-5;-\frac{15}{4};-\frac{9}{4}\right).\)
Chúc bạn học tốt!
`a)`
`3x(2xy - 5x^2y)`
`= 3x*2xy + 3x* (-5x^2y)`
`= 6x^2y - 15x^3y`
`b)`
`2x^2y (xy - 4xy^2 + 7y)`
`= 2x^2y * xy + 2x^2y * (-4xy^2) + 2x^2y * 7y`
`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`
`c)`
`(-2/3xy^2 + 6yz^2)*(-1/2xy)`
`= (-2/3xy^2)*(-1/2xy) + 6yz^2 * (-1/2xy)`
`= 1/3x^2y^3 - 3xy^2z^2`
`a, 3x(2xy-5x^2y)`
`= 6x^2y - 15x^3y`
`b, 2x^2y(xy-4xy^2+7y)`
`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`
`c, (-2/3xy^2 + 6yz^2).(-1/2xy)`
`= 1/3x^2y^3 - 3xy^2z^2`
a)\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
\(\Leftrightarrow\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}\)
\(\Leftrightarrow\frac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}\)
\(\Leftrightarrow\frac{x+y-1}{x-y+1}\)
b)\(\frac{3x^3-6x^2y+xy^2-2y^3}{9x^5-18x^4y-xy^4+2y^5}\)
\(\Leftrightarrow\frac{3x^2\left(x-2y\right)+y^2\left(x-2y\right)}{9x^4\left(x-2y\right)-y^4\left(x-2y\right)}\)
\(\Leftrightarrow\frac{\left(3x^2+y^2\right)\left(x-2y\right)}{\left(9x^4-y^4\right)\left(x-2y\right)}\)
\(\Leftrightarrow\frac{3x^2+y^2}{\left(3x^2-y^2\right)\left(3x^2+y^2\right)}\)
\(\Leftrightarrow\frac{1}{3x^2-y^2}\)
a.\(\frac{4x-1}{2x^2y}-\frac{7x-1}{3x^2y}\) MTC=6x2y
\(=\frac{3\left(4x-1\right)}{6x^2y}-\frac{2\left(7x-1\right)}{6x^2y}\)
\(=\frac{12x-3-\left(14x-2\right)}{6x^2y}\)
\(=\frac{12x-3-14x+2}{6x^2y}\)
\(=\frac{-2x-1}{6x^2y}=\frac{2\left(-x-1\right)}{6x^2y}=-\frac{x-1}{3x^2y}\)
b.\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\) MTC= 2x (x + 3)
\(=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{3x-\left(x-6\right)}{2x\left(x+3\right)}\)
\(=\frac{3x-x+6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)
c.\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
\(=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)MTC= xy (x+2y).(x-2y)
\(=\frac{2xy\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\frac{xy\left(x+2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\frac{4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{3x^2y-2xy^2+4xy}{xy\left(x-2y\right)\left(x+2y\right)}=\frac{xy\left(3x-2y+4\right)}{xy\left(x-2y\right)\left(x+2y\right)}=\frac{3x-2y+4}{\left(x-2y\right)\left(x+2y\right)}\)
Chọn mk nha!
Bài 1:
a) Ta có: \(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
\(=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2}{x+2y}+\frac{y}{x-2y}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}+\frac{y\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x-4y+xy+2y^2+4}{\left(x-2y\right)\cdot\left(x+2y\right)}\)
b) Ta có: \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2x-2y}{x^2+xy+y^2}\)
c) Ta có: \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}\)
\(=\frac{xy}{2x-y}+\frac{x^2-1}{2x-y}\)
\(=\frac{x^2+xy-1}{2x-y}\)
d) Ta có: \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}\)
\(=\frac{2\left(x^2-y^2\right)+2y^2}{x}\)
\(=\frac{2x^2-2y^2+2y^2}{x}\)
\(=\frac{2x^2}{x}=2x\)
Bài 2:
a) Ta có: \(\frac{4x+1}{2}-\frac{3x+2}{3}\)
\(=\frac{3\left(4x+1\right)}{6}-\frac{2\left(3x+2\right)}{6}\)
\(=\frac{12x+3-6x-4}{6}\)
\(=\frac{6x-1}{6}\)
b) Ta có: \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)
c) Ta có: \(\frac{x+3}{x^2+1}-\frac{1}{x^2+2}\)
\(=\frac{\left(x+3\right)\left(x^2+2\right)}{\left(x^2+1\right)\left(x^2+2\right)}-\frac{x^2+1}{\left(x^2+2\right)\left(x^2+1\right)}\)
\(=\frac{x^3+2x+3x^2+6-x^2-1}{\left(x^2+1\right)\left(x^2+2\right)}\)
\(=\frac{x^3+2x^2+2x+5}{\left(x^2+1\right)\left(x^2+2\right)}\)
e) Ta có: \(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)
\(=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x}\)
\(=\frac{3\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{2x\left(2x-1\right)}{2x\left(x+1\right)\left(x-1\right)}-\frac{2\cdot2\cdot\left(x+1\right)\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{3x-3+4x^2-2x-4\left(x^2-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{4x^2+x-3-4x^2+4}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x+1}{2x\left(x+1\right)\left(x-1\right)}=\frac{1}{2x\left(x-1\right)}\)
d) Ta có: \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
\(=\frac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{3x+2-12x+8+10x-8}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{x+2}{\left(3x-2\right)\left(3x+2\right)}\)
f) Ta có: \(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)
\(=\frac{3x\cdot2\cdot\left(x-y\right)}{10\left(x+y\right)\left(x-y\right)}-\frac{x\cdot\left(x+y\right)}{10\left(x-y\right)\left(x+y\right)}\)
\(=\frac{6x^2-6xy-x^2-xy}{10\left(x-y\right)\left(x+y\right)}\)
\(=\frac{5x^2-7xy}{10\left(x-y\right)\left(x+y\right)}\)
Làmmmm
1/ \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)(ĐKXĐ:x\(\ne0\), x\(\ne\frac{1}{2}\))
= \(\frac{\left(1-2x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\frac{4x^2}{\left(2x-1\right)2x}-\frac{1}{2x\left(2x-1\right)}\)
\(=\frac{2x-1-4x^2+2x+4x^2-1}{2x\left(2x-1\right)}\)
\(=\frac{4x-2}{2x\left(2x-1\right)}=\frac{2\left(2x-1\right)}{2x\left(2x-1\right)}=\frac{1}{x}\)
KL:..............
2/\(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}\)(ĐKXĐ : x\(\ne1\))
\(=\frac{x^2+2}{x^3-1}+\frac{2x-2}{x^3-1}-\frac{x^2+x+1}{x^3-1}\)
\(=\frac{x^2+2+2x-2-x^2-x-1}{x^3-1}=\frac{x-1}{x^3-1}=\frac{1}{x^2+x+1}\)
Kl:....................