A = sin40*cos50 + sin50*cos40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5. Cho x,y dương thỏa mãn \(x+y=\dfrac{1}{2}\).Tìm giá trị nhỏ nhất của
\(P=\dfrac{1}{x}+\dfrac{1}{y}\)
Giải:
\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{\dfrac{1}{2}}{xy}=\dfrac{2}{xy}\)
--> P nhỏ nhất khi \(xy\) lớn nhất
Ta có:
\(x^2+y^2\ge2xy\) ( BĐT AM-GM )
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow1\ge4xy\)
\(\Leftrightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow P\ge2:\dfrac{1}{4}=8\)
Vậy \(Min_P=8\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)
Chú ý rằng: sin450 = cos450, sin400 = cos500, sin500 = cos400
Ta được:
\(\dfrac{\cos50^0-\cos45^0+\cos50^0}{\cos40^0-\cos45^0+\cos50^0}-\dfrac{6\times3\left(\dfrac{\sqrt{3}}{3}+\tan15^0\right)}{3\left(1-\dfrac{\sqrt{3}}{3}\tan15^0\right)}\)
\(=1-6\left(\dfrac{\tan30^0+\tan15^0}{1-\tan30^0\times\tan15^0}\right)\)
\(=1-6\tan45^0=-5\)
cos 50=sin 40(2 góc phụ nhau)
50>40=>sin 50> sin 40=> sin 50> cos 50 (1)
sin 50<1 (2)
tan 50 =sin50/cos 50=sin50 / sin40 > 1(tử lớn hơn mẫu)=>tan 50>1 (3)
(1)(2)(3)=> tan50>sin50>cos50
A=sin240+cos210+2sin40cos10-cos240-sin210-2sin10cos40+cos(90+50)
A=(sin240-cos240)+(cos210-sin210)+2(sin40cos10-cos40sin10)-sin50
A=(sin40-cos40)(sin40+cos40)-(sin10-cos10)(sin10+cos10)+1-sin50
A=\(\sqrt{2}\) sin(40-\(\frac{\pi}{4}\))\(\sqrt{2}\) cos(40-\(\frac{\pi}{4}\))-\(\sqrt{2}\)sin(10-\(\frac{\pi}{4}\))\(\sqrt{2}\) cos(10-\(\frac{\pi}{4}\))+1-sin50
A=-2sin5cos5+2sin35cos35+1-sin50
A= - sin10+sin70+1-sin50
A= 2cos40sin30-sin(90-40)+1
A=cos40-cos40+1 =1
a: \(\sin25^0< \sin70^0\)
b: \(\cos40^0>\cos75^0\)
c: \(\sin38^0=\cos52^0< \cos27^0\)
d: \(\sin50^0=\cos40^0>\cos50^0\)
Ta có: \(\sin10^0+\sin40^0-\cos50^0-\cos80^0\)
\(=\left(\sin10^0-\cos80^0\right)+\left(\sin40^0-\cos50^0\right)\)
\(=\left(\cos80^0-\cos80^0\right)+\left(\cos50^0-\cos50^0\right)\)
\(=0\)
\(A=cos20.cos40.cos60.cos80\)
\(A.sin20=sin20.cos20.cos40.cos60.cos80\)
\(Asin20=\frac{1}{2}sin40.cos40.cos80.cos60\)
\(Asin20=\frac{1}{4}sin80.cos80.cos60\)
\(Asin20=\frac{1}{8}sin160.cos60\)
\(Asin20=\frac{1}{8}sin20.cos60\)
\(A=\frac{1}{8}cos60=\frac{1}{16}\)
\(B=sin10.cos40.cos20\)
\(Bcos10=sin10.cos10.cos20.cos40\)
\(Bcos10=\frac{1}{2}sin20.cos20.cos40\)
\(Bcos10=\frac{1}{4}sin40.cos40\)
\(Bcos10=\frac{1}{8}sin80=\frac{1}{8}cos10\)
\(B=\frac{1}{8}\)
A= \(\frac{1}{2}\)[sin(-10)+sin90] +\(\frac{1}{2}\)(sin10+sin90)
A= \(\frac{1}{2}\)(-sin10 +1) +\(\frac{1}{2}\)(sin10 +1)
A=\(\frac{1}{2}\)(-sin10+sin10)+1
A= 1