Chứng minh : \(n^4+6n^3+11n^2+6n\) chia hết cho 24 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
t A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1)
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*)
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co:
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] =
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4)
nhận thấy A(k+1) là tích của số tự nhiên liên tiếp=> A(k+1) chia hết cho 24
=> A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*).
dat A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1)
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*)
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24 (**).
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co:
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] =
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4)
nhan thay A(k+1) la tich cua so tu nhien lien tiep=> A(k+1) chia het cho 24 (***)
tu (*) (**) va (***) => A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*).
Phân tích n^4+6n^3+n^2+6n thành: n(n+)(n+2)(n+3)
Nhận thấy:n,(n+),(n+2),(n+3) là 4 số nguyên liên tiếp với n nguyên
=> n(n+)(n+2)(n+3)chia hết cho 24
=>n^4+6n^3+n^2+6n chia hết cho 24
tick đúng cho mình nhé !
\(A=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24
A = n4 + 6n3 + 11n2 + 6n
= n(n3 + 6n2 + 11n + 6)
= n(n3 + n2 + 5n2 + 5n + 6n + 6)
= n[n2(n + 1) + 5n(n + 1) + 6(n + 1)]
= n(n + 1)(n2 + 5n + 6)
= n(n + 1)(n + 2)(n + 3)
A = n(n + 1)(n + 2)(n + 3)
Trong đó là tích 4 số tự nhiên liên tiếp có một số chia hết cho 3 (1)
4 tự nhiên liên tiếp có hai số chẵn liên tiếp, trong 2 số chẵn liên tiếp có một số chia hết cho 2 và một số chia hết cho 4. Nên tích 4 tự nhiên liên tiếp chia hết cho 8 (2)
3 và 8 là hai số nguyên tố cùng nhau (3)
Từ (1), (2), (3) => n4 +6n3+11n2+6n chia hết cho tích (3 . 8) = 24 (đpcm)
Ta có:
n⁴ + 6n³ + 11n² + 6n
= n⁴ + 2n³ + 4n³ + 8n² + 3n² + 6n
= (n⁴+2n³) + (4n³ + 8n²)+(3n² + 6n)
= n³(n+2) + 4n²(n+2) + 3n(n+2)
= (n+2)(n³+4n²+3n)
= (n+2)n(n²+3n)
= n(n+1)(n+2)(n+3)
Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n⁴+2n³+4n³+8n²+3n²+6n chia hết cho 24.
Chúc bạn học tốt😊😊. kk mình nha😅😅