Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)
\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài 1:
\(a,=3x\left(3xy+5y-1\right)\\ b,=\left(z-2\right)\left(3z-5\right)\\ c,=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\\ d,=x^2-3x+5x-15=\left(x-3\right)\left(x+5\right)\)
Bài 2:
\(a,\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x+2-4x^2-12x=9\\ \Leftrightarrow4x^2+10x+7=0\\ \Leftrightarrow4\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow4\left(x+\dfrac{5}{6}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\\ c,\Leftrightarrow x^2-12x+36=0\\ \Leftrightarrow\left(x-6\right)^2=0\\ \Leftrightarrow x=6\)
a) \(x^2-2x-4y^2-4y=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)
\(=\left(x-2y-3\right)\left(x+2y\right)\)
b) \(x^2-4x^2y^2+y^2+2xy=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-4x^2y^2=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c) \(x^6-x^4+2x^3+2x^2=\left(x^6+2x^3+1\right)-\left(x^4-2x^2+1\right)\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3+1-x^2+1\right)\left(x^3+1+x^2-1\right)=x^2\left(x^3-x^2+2\right)\left(x+1\right)\)
d) \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-8y^3=\left(x+1-2y\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)
a 4x -4y +(x-y)^2
=4(x-y)+(x-y).(x-y)
=(x-y).(4+x-y)
c x^2(x+1)-4(x+1)
(x+1).(x^2-4)
d x^4-(x^2-2x+1)
=x^4-(x-1)^2
=x^2(x-x+1)(x-x-1)
MIK KO BIT DUNG HAY KO CON B THI MIK KO BIET LAM
Câu b dễ thôi
\(x^4-4x^3-8x^2+8x\)
\(=x\left(x^3-4x^2-8x+8\right)\)
\(=x\left(x+2\right)\left(x^2-6x+4\right)\)
a: \(=-x^2y\cdot x+x^2y\cdot y=x^2y\left(-x+y\right)\)
b: \(=-xy^2\cdot x^2-xy^2\cdot z=-xy^2\left(x^2+z\right)\)
c: x^2y^3-xy^2
=xy^2*xy-xy^2
=xy^2(xy-1)
d: -x^3z-z
=z(-x^3-1)
=-z(x+1)(x^2-x+1)
e: =x(x-y)+(x-y)
=(x-y)(x+1)
n: =x^2(x-1)-(x-1)
=(x-1)(x^2-1)
=(x-1)^2(x+1)
1) x2 - x - y2 - y = (x - y)(x + y) - (x + y) = (x - y - 1)(x + y)
2. x2 - 2xy + y2 - z2 = (x - y)2 - z2 = (x - y - z)(x - y + z)
3. 5x - 5y + ax - ay = 5(x - y) + a(x - y) = (a + 5)(x - y)
4. a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)
5. 4x2 - y2 + 4x + 1 = (2x + 1)2 - y2 = (2x + 1 - y)(2x + y + 1)
6. x3 - x + y3 - y = (x + y)(x2 - xy + y2) - (x + y) = (x + y)(x2 - xy + y2 - 1)
Trả lời:
1, x2 - x - y2 - y
= ( x2 - y2 ) - ( x + y )
= ( x - y ) ( x + y ) - ( x + y )
= ( x + y ) ( x - y - 1 )
2, x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - x2
= ( x - y - z ) ( x - y + z )
3, 5x - 5y + ax - ay
= ( 5x + ax ) - ( 5y + ay )
= x ( 5 + a ) - y ( 5 + a )
= ( 5 + a ) ( x - y )
= ( 5 + a ) ( x - y )
4, a3 - a2x - ay + xy
= ( a3 - a2x ) - ( ay - xy )
= a2 ( a - x ) - y ( a - x )
= ( a - x ) ( a2 - y )
5, 4x2 - y2 + 4x + 1
= ( 4x2 + 4x + 1 ) - y2
= ( 2x + 1 )2 - y2
= ( 2x + 1 - y ) ( 2x + 1 + y )
6, x3 - x + y3 - y
= ( x3 + y3 ) - ( x + y )
= ( x + y ) ( x2 - xy + y ) - ( x + y )
= ( x + y ) ( x2 - xy + y - 1 )
a) \(3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(3-x\right)\left(x+4\right)\)
b) \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)